Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Search

Full bibliography 2,884 resources

  • Fourier transform infrared (FTIR) spectroscopy is a biophysical technique used for non-destructive biochemical profiling of biological samples. It can provide comprehensive information about the total cellular biochemical profile of microbial cells. In this study, FTIR spectroscopy was used to perform biochemical characterization of twenty-nine bacterial strains isolated from the Antarctic meltwater ponds. The bacteria were grown on two forms of brain heart infusion (BHI) medium: agar at six different temperatures (4, 10, 18, 25, 30, and 37°C) and on broth at 18°C. Multivariate data analysis approaches such as principal component analysis (PCA) and correlation analysis were used to study the difference in biochemical profiles induced by the cultivation conditions. The observed results indicated a strong correlation between FTIR spectra and the phylogenetic relationships among the studied bacteria. The most accurate taxonomy-aligned clustering was achieved with bacteria cultivated on agar. Cultivation on two forms of BHI medium provided biochemically different bacterial biomass. The impact of temperature on the total cellular biochemical profile of the studied bacteria was species-specific, however, similarly for all bacteria, lipid spectral region was the least affected while polysaccharide region was the most affected by different temperatures. The biggest temperature-triggered changes of the cell chemistry were detected for bacteria with a wide temperature tolerance such Pseudomonas lundensis strains and Acinetobacter lwoffii BIM B-1558.

  • Temporal distributions of Antarctic krill (Euphausia superba) density and aggregation types were characterized and compared using Nortek Signature100 and SIMRAD Wideband Autonomous Transceiver (WBAT) upward-looking echosounders. Noise varied between the two echosounders. With the Signature100, it was necessary to correct data for background, transient, and impulse noises, while the WBAT data needed to be corrected for background noise only. For selected regions with no visible backscatter, the signal-to-noise ratio of Sv values (i.e. the ratio between the signal and the background noise level) did not vary between the two echosounders. Surface echo backscatter was similar during similar time periods. Descriptive metrics were used to quantify spatial and temporal krill vertical distributions: volume backscatter, mean depth, center of mass, inertia, equivalent area, aggregation index, and proportion occupied. Krill backscatter density differed between the two instruments but was detected at similar mean depths. Krill aggregations were identified at each mooring location and classified in three types based on morphological characteristics. Each type of aggregation shape differed at the two spatially separated moorings, while the acoustic density of each aggregation type was similar. The Signature100 detected a lower number of krill aggregations (n = 133) compared to the WBAT (n = 707). Although both instruments can be used for autonomous deployment and sampling of krill over extended periods, there is a strong caveat for the use of the Signature100 due to significant differences in noise characteristics and krill detection.

  • Diving patterns of air-breathing predators were monitored from three moored subsurface upward-looking echosounders. Complete and partial dive profiles were visible on active acoustic records as echoes that started and/or returned to the surface. Dive metrics: maximum dive depths, durations, and wiggle count were measured and angles, distances, and velocities, were calculated at each site. Dive shapes ‘U’, ‘V’ and ‘W’ were derived using the number of wiggles and the percentage of dive bottom time. Dive profiles were classified into four types with type 1 dives being short in total duration and distance, low velocities, small angles, shallow, and linked to ‘U’ and ‘W’ shapes. Type 2 dives were short in distance, had low velocities, shallow depths, and were linked to ‘V’ dives. Dive types 3 and 4 had higher velocities, larger angles, longer total durations, and were deeper than types 1 and 2. Observed dive types could correspond to travelling, exploring, and foraging predator behaviors. Significant predator-prey overlaps occurred with predator dive profile counts correlated with krill aggregation thickness, density, and depth. This study demonstrates the utility of using stationary active acoustics to identify predator dive profiles with a simultaneous characterization of the potential prey field.

  • Antarctic sea ice has exhibited significant variability over the satellite record, including a period of prolonged and gradual expansion, as well as a period of sudden decline. A number of mechanisms have been proposed to explain this variability, but how each mechanism manifests spatially and temporally remains poorly understood. Here, we use a statistical method called low-frequency component analysis to analyze the spatiotemporal structure of observed Antarctic sea ice concentration variability. The identified patterns reveal distinct modes of low-frequency sea ice variability. The leading mode, which accounts for the large-scale, gradual expansion of sea ice, is associated with the Interdecadal Pacific Oscillation and resembles the observed sea surface temperature trend pattern that climate models have trouble reproducing. The second mode is associated with the central Pacific El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode and accounts for most of the sea ice variability in the Ross Sea. The third mode is associated with the eastern Pacific ENSO and Amundsen Sea Low and accounts for most of the pan-Antarctic sea ice variability and almost all of the sea ice variability in the Weddell Sea. The third mode is also related to periods of abrupt Antarctic sea ice decline that are associated with a weakening of the circumpolar westerlies, which favors surface warming through a shoaling of the ocean mixed layer and decreased northward Ekman heat transport. Broadly, these results suggest that climate model biases in long-term Antarctic sea ice and large-scale sea surface temperature trends are related to each other and that eastern Pacific ENSO variability is a key ingredient for abrupt Antarctic sea ice changes.

  • Future climate and sea level projections depend sensitively on the response of the Antarctic Ice Sheet to ocean-driven melting and the resulting freshwater fluxes into the Southern Ocean. Circumpolar Deep Water (CDW) transport across the Antarctic continental shelf and into cavities beneath ice shelves is increasingly recognised as a crucial heat source for ice shelf melt. Quantifying past changes in the temperature of CDW is therefore of great benefit for modelling ice sheet response to past warm climates, for validating paleoclimate models, and for putting recent and projected changes in CDW temperature into context. Here we compile the available bottom water temperature reconstructions representative of CDW over the past 800 kyr. Estimated interglacial warming reached anomalies of +0.6 +/- 0.4 degrees C (MIS 11) and +0.5 +/- 0.5 degrees C (MIS 5) relative to present. Glacial cooling typically reached anomalies of ca. -1.5 to -2 degrees C, therefore maintaining positive thermal forcing for ice shelf melt even during glacials in the Amundsen Sea region of West Antarctica. Despite high variance amongst a small number of records and poor (4 kyr) temporal resolution, we find persistent and close relationships between our estimated CDW temperature and Southern Ocean sea surface temperature, Antarctic surface air temperature, and global deep-water temperature reconstructions at glacial-cycle timescales. Given the important role that CDW plays in connecting the world's three main ocean basins and in driving Antarctic Ice Sheet mass loss, additional temperature reconstructions targeting CDW are urgently needed to increase temporal and spatial resolution and to decrease uncertainty in past CDW temperatures - whether for use as a boundary condition, for model validation, or for understanding past oceanographic changes.

  • Abstract The Antarctic Slope Front and the associated Antarctic Slope Current dynamically regulate the exchanges of heat across the continental shelf break around Antarctica. Where the front is weak, relatively warm deep waters reach the ice shelf cavities, contributing to basal melting and ultimately affecting sea level rise. Here, we present new 2017?2021 records from two moorings deployed on the upper continental slope (530 and 738 m depth) just upstream of the Filchner Trough in the southeastern Weddell Sea. The structure and seasonal variability of the frontal system in this region, central to the inflow of warm water toward the large Filchner-Ronne Ice Shelf, is previously undescribed. We use the records to describe the mean state and the seasonal variability of the regional hydrography and the southern part of the Antarctic Slope Current. We find that (a) the current is, contrary to previous assumptions, bottom-enhanced, (b) the isotherms slope upwards toward the shelf break, and more so for warmer isotherms, and (c) the monthly mean thermocline depth is shallowest in February-March and deepest in May-June while (d) the current is strongest in April-June. On monthly timescales, we show that (e) positive temperature anomalies of the de-seasoned records are associated with weaker-than-average currents. We propose that the upward-sloping isotherms are linked to the local topography and conservation of potential vorticity. Our results contribute to the understanding of how warm ocean waters propagate southward and potentially affect basal melt rates at the Filchner-Ronne Ice Shelf.

  • The polar regions are increasingly at the center of attention as the hot spots of climate crisis as well as tourism development. The recent IPCC reports highlight several climate change risks for the rather carbon-intensive and weather-based/dependent polar tourism industry in the Arctic and the Antarctic. This study presents the scholarly state-of-knowledge on tourism and climate change in the polar regions with a literature survey extending beyond the Anglophone publications. As a supporting tool, we provide a live web GIS application based on the geographical coverages of the publications and filterable by various spatial, thematic and bibliographical attributes. The final list of 137 publications indicates that, regionally, the Arctic has been covered more than the Antarctic, whilst an uneven distribution within the Arctic also exists. In terms of the climate change risks themes, climate risk research, i.e. impact and adaptation studies, strongly outnumbers the carbon risk studies especially in the Arctic context, and, despite a balance between the two main risk themes, climate risk research in the Antarctic proves itself outdated. Accordingly, the review ends with a research agenda based on these spatial and thematic gaps and their detailed breakdowns.

  • Maritime historical documentary sources of weather and state of sea surface including sea ice can aid in filling a known climate knowledge gap for the Southern Ocean and Antarctica for the first half of the 20th century. This study presents a data set of marine climate, sea ice and icebergs recovered from a collection of logbooks from mainly Norwegian whaling factory ships that operated in the Southern Ocean during 1929-1940. The data set comprises some 8000 weather and 4000 sea ice/open sea records from austral summers of the study period. This paper further discusses the structure and content of most common Norwegian maritime documentary sources of the period along with the practices of logging information relevant for the study, such as time keeping, positioning and making weather observations. An emphasis was made on recovery of notes on sea ice and icebergs and their interpretation in terms of WMO categories of sea ice concentration. Data, including ship-related metadata from all individual documents are homogenized and structured to a common machine-readable format that simplifies its ingestion into relevant climate data depositories.

  • From 1901 to 1912 – known as the “heroic period” of Arctic and Antarctic exploration – great inroads were made (not only geographic but also scientific) to our knowledge of the continent. At Amundsen's Expedition through the Northwest Passage, measurements of the geomagnetic field and visual auroras were carried out for 19 months at Gjoa Haven (Gjøahavn in Norwegian; geographic coordinates 68°37′10′′ N, 95°53′25′′ W). Scott's Discovery Expedition – at Cape Armitage, McMurdo (coordinates 77.86° S, 166.69° E), Antarctica – carried out the same type of measurements. Their observations were carried out geomagnetically conjugate to Gjoa Haven, with both stations close to 78° magnetic latitude. In addition, measurements were overlapping in time during 1903–1904. However, these two stations are located at different longitudes, so there is a difference in local time between the stations of about 6.5 h. Gjoa Haven and Cape Armitage are conveniently located for separating disturbances in the polar cap regions caused by solar electromagnetic radiations or the solar wind. Auroras were observed during 7 months per year. This gave a unique possibility to compare conjugate characteristics of polar cap auroras. Comparing conjugate geophysical data introduces some difficulties. During the winter season at Gjoa Haven, they had a bright summer in Antarctica, and visa versa. Thus, simultaneous temporal and spatial ionospheric variations can be marked differently. Still, the average diurnal and seasonal variations were similar. The quantity of the auroral data from Cape Armitage was larger because there they had a continuous watch of the sky. The main findings regarding polar cap auroras are the following. Three different auroral forms dominate the polar cap. Low-intensity auroral bands – then called streamers – were the dominating auroral forms morning and afternoon. The number of auroral events in 1903 was nearly twice that in 1902 and 1904. A marked midwinter maximum was observed at both stations. Many displays were observed poleward of the oval. The large fraction was associated with weak magnetic disturbances. Some forms of polar cap aurora have special magnetic signatures and seem to be anti-correlated with Kp. They can be mapped even if they are not seen. According to recent satellite measurements (Newell et al., 2009), they are probably caused by polar rain and/or photoelectrons.

  • Fluid infiltration into Proterozoic and Early Palaeozoic dry, orthopyroxene-bearing granitoids and gneisses in Dronning Maud Land, Antarctica, has caused changes to rock appearance, mineralogy, and rock chemistry. The main mineralogical changes are the replacement of orthopyroxene by hornblende and biotite, ilmenite by titanite, and various changes in feldspar structure and composition. Geochemically, these processes resulted in general gains of Si, mostly of Al, and marginally of K and Na but losses of Fe, Mg, Ti, Ca, and P. The isotopic oxygen composition (δ18OSMOW = 6.0‰–9.9‰) is in accordance with that of the magmatic precursor, both for the host rock and infiltrating fluid. U-Pb isotopes in zircon of the altered and unaltered syenite to quartz-monzonite indicate a primary crystallization age of 520.2 ± 1.0 Ma, while titanite defines alteration at 485.5 ± 1.4 Ma. Two sets of gneiss samples yield a Rb-Sr age of 517 ± 6 Ma and a Sm-Nd age of 536 ± 23 Ma. The initial Sr and Nd isotopic ratios suggest derivation of the gneisses from a relatively juvenile source but with a very strong metasomatic effect that introduced radiogenic Sr into the system. The granitoid data indicate instead a derivation from Mid-Proterozoic crust, probably with additions of mantle components.

  • Background: Plankton is the essential ecological category that occupies the lower levels of aquatic trophic networks, representing a good indicator of environmental change. However, most studies deal with distribution of single spe- cies or taxa and do not take into account the complex of biological interactions of the real world that rule the ecologi- cal processes. Results: This study focused on analyzing Antarctic marine phytoplankton, mesozooplankton, and microzooplankton, examining their biological interactions and co-existences. Field data yielded 1053 biological interaction values, 762 coexistence values, and 15 zero values. Six phytoplankton assemblages and six copepod species were selected based on their abundance and ecological roles. Using 23 environmental descriptors, we modelled the distribution of taxa to accurately represent their occurrences. Sampling was conducted during the 2016–2017 Italian National Antarctic Programme (PNRA) ‘P-ROSE’ project in the East Ross Sea. Machine learning techniques were applied to the occurrence data to generate 48 predictive species distribution maps (SDMs), producing 3D maps for the entire Ross Sea area. These models quantitatively predicted the occurrences of each copepod and phytoplankton assemblage, providing crucial insights into potential variations in biotic and trophic interactions, with significant implications for the man- agement and conservation of Antarctic marine resources. The Receiver Operating Characteristic (ROC) results indi- cated the highest model efficiency, for Cyanophyta (74%) among phytoplankton assemblages and Paralabidocera antarctica (83%) among copepod communities. The SDMs revealed distinct spatial heterogeneity in the Ross Sea area, with an average Relative Index of Occurrence values of 0.28 (min: 0; max: 0.65) for phytoplankton assemblages and 0.39 (min: 0; max: 0.71) for copepods. Conclusion: The results of this study are essential for a science-based management for one of the world’s most pris- tine ecosystems and addressing potential climate-induced alterations in species interactions. Our study emphasizes the importance of considering biological interactions in planktonic studies, employing open access and machine learning for measurable and repeatable distribution modelling, and providing crucial ecological insights for informed conservation strategies in the face of environmental change.

  • The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales.

  • The polar regions are facing a wide range of compounding challenges, from climate change to increased human activity. Infrastructure, rescue services, and disaster response capabilities are limited in these remote environments. Relevant and usable weather, water, ice, and climate (WWIC) information is vital for safety, activity success, adaptation, and environmental protection. This has been a key focus for the World Meteorological Organization’s (WMO) Polar Prediction Project (PPP), and in particular its “Societal and Economic Research and Applications” (PPP-SERA) Task Team, which together over a decade have sought to understand polar WWIC information use in relation to operational needs, constraints, and decision contexts to inform the development of relevant services. To understand research progress and gaps on WWIC information use during the PPP (2013–23), we undertook a systematic bibliometric review of aligned scholarly peer-reviewed journal articles (n = 43), examining collaborations, topics, methods, and regional differences. Themes to emerge included activity and context, human factors, information needs, situational awareness, experience, local and Indigenous knowledge, and sharing of information. We observed an uneven representation of disciplinary backgrounds, geographic locations, research topics, and sectoral foci. Our review signifies an overall lack of Antarctic WWIC services research and a dominant focus on Arctic sea ice operations and risks. We noted with concern a mismatch between user needs and services provided. Our findings can help to improve WWIC services’ dissemination, communication effectiveness, and actionable knowledge provision for users and guide future research as the critical need for salient weather services across the polar regions remains beyond the PPP. Significance Statement Every day, people in the Arctic and Antarctic use weather, water, ice, and climate information to plan and carry out outdoor activities and operations in a safe way. Despite advances in numerical weather prediction, technology, and product development, barriers to accessing and effectively communicating high-quality usable observations, forecasts, and actionable knowledge remain. Poorer services, prediction accuracy, and interpretation are exacerbated by a lack of integrated social science research on relevant topics and a mismatch between the services provided and user needs. As a result, continued user engagement, research focusing on information use, risk communication, decision-making processes, and the application of science for services remain highly relevant to reducing risks and improving safety for people living, visiting, and working in the polar regions.

  • The ongoing global climate crisis increases temperatures in polar regions faster and with greater magnitude than elsewhere. The decline of Arctic sea ice opens up new passages, eventually leading to higher anthropogenic activities such as shipping, fishing, and mining. Climate change and anthropogenic activities will increase contaminant transport from temperate to Arctic regions. The shipping industry uses copper as an antifouling coating. Copper is an essential element but becomes toxic at excess concentrations, and its use may inadvertently affect non-target organisms such as copepods. Copper affects copepods by lowering reproductive output, prolonging developmental time, and causing increased mortality. As data on copper sensitivity of polar copepods at low temperatures are rare, we conducted onboard survival experiments with the Arctic region’s most common copepod species (Calanus finmarchicus, C. glacialis, C. hyperboreus). Acute survival tests were done for up to 8 days on individuals in 70 ml bottles at 1 °C with nominal copper concentrations ranging from 3 to 480 μg L−1. We used a reduced General Unified Threshold model for Survival (GUTS) to analyse the data, and placed our results in the context of the few published copper sensitivity data of the Antarctic and temperate copepod species at low temperatures. The sensitivity of Cu exposure was similar between the three Calanus species. However, a model comparison suggests that the tested C. glacialis population is less sensitive than the other two species in our experiments. Compared to published data, the three Arctic species appear slightly less sensitive to copper compared to their Antarctic counterparts but more compared to their temperate ones. Our literature search revealed only a few available studies on the copper sensitivity of polar copepods. In the future, this species group will be exposed to more pollutants, which warrants more studies to predict potential risks, especially given possible interactions with environmental factors.

  • Warmer ocean conditions could impact future ice loss from Antarctica due to their ability to thin and reduce the buttressing of laterally confined ice shelves. Previous studies highlight the potential for a cold to warm ocean regime shift within the sub-shelf cavities of the two largest Antarctic ice shelves—the Filchner–Ronne and Ross. However, how this impacts upstream ice flow and mass loss has not been quantified. Here using an ice sheet model and an ensemble of ocean-circulation model sub-shelf melt rates, we show that transition to a warm state in those ice shelf cavities leads to a destabilization and irreversible grounding line retreat in some locations. Once this ocean shift takes place, ice loss from the Filchner–Ronne and Ross catchments is greatly accelerated, and conditions begin to resemble those of the present-day Amundsen Sea sector—responsible for most current observed Antarctic ice loss—where this thermal shift has already occurred.

  • The absorption of atmospheric carbon dioxide (CO2) in the Southern Ocean represents a critical component of the global oceanic carbon budget. Previous assessments of air-sea carbon flux variations and long-term trends in polar regions during winter have faced limitations due to scarce field data and the lack of ocean color satellite imagery, causing uncertainties in estimating CO2 flux estimation. This study utilized the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite to construct a continuous 16-year (2006?2021) time series of sea surface partial pressure of CO2 (pCO2) in the Southern Ocean. Our findings revealed that the polar region in South Ocean acts as a carbon sink in winter, with CO2 flux of ?30 TgC in high-latitude areas (South of 50°S). This work highlights the efficacy of active remote sensing for monitoring sea surface pCO2 and contributes insights into the dynamic carbonate systems of the Southern Ocean.

  • The stock assessment model for the Antarctic krill fishery is a population model operating on daily timesteps, which permits modeling within-year patterns of some population dynamics. We explored the effects of including within-year patterns in natural and fishing mortality on catch limits of krill, by incorporating temporal presence of key predator species and contemporary temporal trends of the fishing fleet. We found that inclusion of within-year variation in natural and fishing mortalities increased catch limits. Fishing mortality had a greater effect than natural mortality despite differences in top-down predation on krill, and potentially increased catch limits by 24% compared to the baseline model. Additionally, the stock assessment model allowed a higher catch limit when fishing was during peak summer months than autumn. Number of days with active fishing was negatively related to precautionary catch limits. Future stock assessments should incorporate contemporary spatiotemporal fishing trends and consider implementing additional ecosystem components into the model.

  • Accurate satellite measurements of the thickness of Antarctic sea ice are urgently needed but pose a particular challenge. The Antarctic data presented here were produced using a method to derive the sea ice thickness from 1.4 GHz brightness temperatures previously developed for the Arctic, with only modified auxiliary data. The ability to observe the thickness of thin sea ice using this method is limited to cold conditions, meaning it is only reasonable during the freezing period, typically March to October. The Soil Moisture and Ocean Salinity (SMOS) level-3 sea ice thickness product contains estimates of the sea ice thickness and its uncertainty up to a thickness of about 1 m. The sea ice thickness is provided as a daily average on a polar stereographic projection grid with a sample resolution of 12.5 km, while the SMOS brightness temperature data used have a footprint size of about 35–40 km in diameter. Data from SMOS have been available since 2010, and the mission's operation has been extended to continue until at least the end of 2025. Here we compare two versions of the SMOS Antarctic sea ice thickness product which are based on different level-1 input data (v3.2 based on SMOS L1C v620 and v3.3 based on SMOS L1C 724). A validation is performed to generate a first baseline reference for future improvements of the retrieval algorithm and synergies with other sensors. Sea ice thickness measurements to validate the SMOS product are particularly rare in Antarctica, especially during the winter season and for the valid range of thicknesses. From the available validation measurements, we selected datasets from the Weddell Sea that have varying degrees of representativeness: Helicopter-based EM Bird (HEM), Surface and Under-Ice Trawl (SUIT), and stationary Upward-Looking Sonars (ULS). While the helicopter can measure hundreds of kilometres, SUIT's use is limited to distances of a few kilometres and thus only captures a small fraction of an SMOS footprint. Compared to SMOS, the ULS are point measurements and multi-year time series are necessary to enable a statistically representative comparison. Only four of the ULS moorings have a temporal overlap with SMOS in the year 2010. Based on selected averaged HEM flights and monthly ULS climatologies, we find a small mean difference (bias) of less than 10 cm and a root mean square deviation of about 20 cm with a correlation coefficient R > 0.9 for the valid sea ice thickness range between 0 and about 1 m. The SMOS sea ice thickness showed an underestimate of about 40 cm with respect to the less representative SUIT validation data in the marginal ice zone. Compared with sea ice thickness outside the valid range, we find that SMOS strongly underestimates the real values, which underlines the need for combination with other sensors such as altimeters. In summary, the overall validity of the SMOS sea ice thickness for thin sea ice up to a thickness of about 1 m has been demonstrated through validation with multiple datasets. To ensure the quality of the SMOS product, an independent regional sea ice extent index was used for control. We found that the new version, v3.3, is slightly improved in terms of completeness, indicating fewer missing data. However, it is worth noting that the general characteristics of both datasets are very similar, also with the same limitations.

  • The existence of ice-edge phytoplankton blooms in the Southern Ocean is well described, yet direct observations of the mechanisms of phytoplankton bloom development following seasonal sea-ice melt remain scarce. This study constrains such responses using biological and biogeochemical datasets collected along a coastal-to-offshore transect that bisects the receding sea-ice zone in the Kong Håkon VII Hav (off the coast of Dronning Maud Land). We documented that the biogeochemical growing conditions for phytoplankton vary on a latitudinal gradient of sea-ice concentration, where increased sea-ice melting creates optimal conditions for growth with increased light availability and potentially increased iron supply. The zones of the study area with the least ice cover were associated with diatom dominance, the greatest chlorophyll a concentrations, net community production, and dissolved inorganic carbon drawdown, as well as lower sea surface fugacity of CO2. Together, these associations imply higher potential for an oceanic CO2 sink due, at least in part, to more advanced bloom phase and/or larger bloom magnitude stemming from a relatively longer period of light exposure, as compared to the more ice-covered zones in the study area. From stable oxygen isotope fractions, sea-ice meltwater fractions were highest in the open ocean zone and meteoric meltwater fractions were highest in the coastal and polynya zones, suggesting that potential iron sources may also change on a latitudinal gradient across the study area. Variable phytoplankton community compositions were related to changing sea-ice concentrations, with a typical species succession from sympagic flagellate species (Pyramimonas sp. and Phaeocystis antarctica) to pelagic diatoms (e.g., Dactyliosolen tenuijunctus) observed across the study area. These results fill a spatiotemporal gap in the Southern Ocean, as sea-ice melting plays a larger role in governing phytoplankton bloom dynamics in the future Southern Ocean due to changing sea-ice conditions caused by anthropogenic global warming.

  • Diatoms of the genus Pseudo-nitzschia, known for their potential toxicity, are integral to the phytoplankton community of the Southern Ocean, which surrounds Antarctica. Despite their ecological importance, the diversity and toxicity of Pseudo-nitzschia in this region remain underexplored. Globally, these diatoms are notorious for forming harmful algal blooms in temperate and tropical waters, causing significant impacts on marine life, ecosystems, and coastal economies. However, detailed information on the diversity, morphology, and toxicity of Pseudo-nitzschia species in Antarctic waters is limited, with molecular characterizations of these species being particularly scarce. During three research expeditions to the Southern Ocean, monoclonal strains of Pseudo-nitzschia were isolated and cultivated. Stored samples from a fourth expedition, the Brategg expedition, were used to complete the description of particularly P. turgidula. Through electron microscopy and molecular analysis, two novel species were identified—Pseudo-nitzschia meridionalis sp. nov. and Pseudo-nitzschia glacialis sp. nov.—alongside the previously described species P. subcurvata, P. turgiduloides, and P. turgidula. Toxin assays revealed no detectable levels of domoic acid in P. turgiduloides, P. turgidula, P. meridionalis sp. nov. and P. glacialis sp. nov. Conversely, P. subcurvata was reported in a related study to produce domoic acid and its isomer, isodomoic acid C. These findings emphasize the need for comprehensive research on the phytoplankton of Antarctic waters, which is currently a largely uncharted domain. With the looming threat of climate change, understanding the dynamics of potentially harmful algal populations in this region is becoming increasingly critical.

Last update from database: 11/1/24, 3:10 AM (UTC)

Explore

Topic

Publication year

Online resource