Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Full bibliography

Extended seasonal prediction of Antarctic sea ice concentration using ANTSIC-UNet

Resource type
Authors/contributors
Title
Extended seasonal prediction of Antarctic sea ice concentration using ANTSIC-UNet
Abstract
Antarctic sea ice has experienced rapid change in recent years, with the total sea ice extent abruptly decreasing after a period of gradual increase from the late 1970s until 2014. Accurate long-term predictions of Antarctic sea ice concentration by dynamical or machine learning models are crucial for supporting the expanding activities in the Southern Ocean, related to for instance scientific research, tourism and fisheries. However, dynamical models often face difficulties in accurately predicting Antarctic sea ice due to limited representations of air-ice-sea interactions, especially on seasonal timescales and during the summer months. In addition, existing deep learning approaches typically rely on historical sea ice data, neglecting the complex interactions between sea ice and other climate variables, and lack interpretability of the underlying physical processes. Moreover, little attention has been paid to extended seasonal forecasts, and systematic evaluations of the predictive skill during extreme years remain scarce. To address these challenges and gaps, we here develop a deep learning model (named ANTSIC-UNet), trained by multiple climate variables, and evaluate its skill for extended up-to-six-months seasonal prediction of Antarctic sea ice concentration. We compare the predictive skill of ANTSIC-UNet in the Pan- and regional Antarctic with two benchmark models (a linear trend and an anomaly persistence model) and a dynamical model (SEAS5). In terms of root-mean-square error (RMSE) of sea ice concentration and integrated ice-edge error (IIEE), ANTSIC-UNet shows much better skills relative to the other models for the extended seasonal prediction, especially for the extreme events in recent years. Sea ice prediction errors increase with lead time, and are smaller during autumn and winter than in summer. The Pacific and Indian Oceans show accurate prediction performance at the sea ice edge during summer, and ANTSIC-UNet provides high predictive skill in capturing the interannual variability of Pan-Antarctic and regional sea ice extent anomalies. In addition, we quantify the importance of variables through a post-hoc interpretation method. This analysis suggests that the ANTSIC-UNet prediction at short lead times is sensitive to sea surface temperature, radiative flux, and atmospheric circulation in addition to sea ice conditions. At longer lead times, zonal wind in the stratosphere appears to be an important influencing factor for the prediction. Building on these findings, we further demonstrate that incorporating physical constraints into deep learning models potentially leads to a gain in the accuracy of the Antarctic sea ice edge prediction on extended seasonal timescales.
Publication
The Cryosphere
Date
2025
Volume
19
Issue
12
Pages
6381-6402
Journal Abbr
The Cryosphere
ISSN
1994-0424
Language
Engelsk
Extra
Publisher: Copernicus Publications
Citation
Yang, Z., Liu, J., Song, M., Hu, Y., Yang, Q., Fan, K., Graversen, R. G., & Zhou, L. (2025). Extended seasonal prediction of Antarctic sea ice concentration using ANTSIC-UNet. The Cryosphere, 19(12), 6381–6402. https://doi.org/10.5194/tc-19-6381-2025