Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 11 resources
-
Vegetation near bird and seal rookeries typically has high δ15N signatures and these high values are linked to the enriched δ15N values of rookery soils. However, Antarctic cryptogams are mostly dependent on atmospheric ammonia (NH3) and volatized NH3 from rookeries is severely depleted in δ15N-NH3. So there is an apparent discrepancy between the isotopically depleted source (NH3) and δ15N-enriched vegetation. In this article, we aim to resolve this discrepancy to better understand the mechanisms and processes involved in isotopic changes during nitrogen transfer between Antarctic marine and terrestrial ecosystems. Under laboratory conditions, we quantified whether volatized NH3 affects the isotopic signature of cryptogams. NH3 volatilizing from penguin guano and elephant seal dung was depleted (44–49‰) in δ15N when captured on acidified filters, compared to the source itself. Cryptogams exposed to the volatized NH3 were enriched (18.8–23.9‰) in δ15N. The moss Andreaea regularis gained more nitrogen (0.9%) than the lichen Usnea antarctica (0.4%) from volatilized NH3, indicating a potential difference in atmospheric NH3 acquisition that is consistent with existing field differences in nitrogen concentrations and δ15N between mosses and lichens in general. This study clarifies the δ15N enrichment of cryptogams resulting from one of the most important nitrogen pathways for Antarctic vegetation.
-
During February–March of the austral summers of 2013/14 and 2014/2015, fieldwork was performed on Half Moon Island, South Shetland Archipelago, Antarctica, to evaluate the distribution and abundance of mosses and lichens, as well as to describe and map the plant communities there. The quadrat (20 × 20 cm) sampling method was employed in a phytosociological study that aimed to describe these communities. The area was mapped using an Astech Promark II® DGPS, yielding sub-metric precision after post-processing with software. The number of species totalled 38 bryophytes, 59 lichens, only one flowering plant (Deschampsia antarctica Desv.), and two macroscopic terrestrial algae. Five types of plant communities were identified on the island, as follows: (1) fruticose lichen and moss cushion, (2) moss carpet, (3) muscicolous lichen, (4) crustose lichen and (5) moss turf.
-
Usnea aurantiaco-atra is the most widespread flora in Fildes Peninsula. There are two growth types of U. aurantiaco-atra: the erect form on rocks and the prostrate form associated with mosses. Phylogenetic analysis showed that individuals of the two growth forms share genotypes. Moreover, haploid disequilibrium testing indicated no significant genetic difference for the two growth forms when fungal and algal internal transcribed spacer rDNA were treated as two alleles of one lichen individual. The two growth forms of U. aurantiaco-atra appear to reflect different stages of lichen–moss community succession. A mode is proposed for demonstrating the occurrence of this succession.
-
King George Island is the largest island and the principal area used for research bases in Antarctica. Argentina, Brazil, Chile, China, Poland, Russia, South Korea and Uruguay have permanent open bases on this island. Other countries have seasonal summer stations on different parts of this island, which demonstrates that human impact is strong on King George Island relative to other areas in the maritime and continental Antarctica. The objective of this work was to present a phytosociological approach for ice-free areas of Hennequin Point, eastern coast of Admiralty Bay, King George Island. The study started with the classification and description of the plant communities based primarily on phytosociological and biodiversity data. The area was mapped using an Astech Promark II® DGPS, yielding sub-metric precision after post-processing with software. The plant communities were described as follows: (1) lichen and moss cushion formation; (2) moss carpet formation; (3) fellfield formation; (4) grass and cushion chamaephyte formation; and (5) Deschampsia Antarctica–lichen formation. Characterizations and distributions of the plant communities are presented on a map at a scale of 1:5000. The plant communities found at Hennequin Point, in general, differ from those found in other areas of the Admiralty Bay region, probably because of the concentration of skua nests in the area and the relief singularities. We conclude by highlighting the importance of the study of plant species found in the ice-free areas of the Antarctic with respect to environmental monitoring and for evaluating global climate and environmental changes. Keywords: Plant communities mapping; lichens; mosses; flowering plants; Antarctic
-
The effects of UV-B exclusion and enhancement of solar radiation on photosynthesis of the two phanerogams which occur in the maritime Antarctic, Deschampsia antarctica and Colobanthus quitensis, and the moss Sanionia uncinats were investigated. Data on air temperature and solar radiation illustrate a drastic seasonal variation. Daily O3 column mean values and UV-B measured at ground level document the occurrence of the O3“hole” in the spring of 1997, with a concomitant increase in UV-B. The grass, D. antarctica, exhibited a broad temperature optimum for photosynthesis between 10–25°C while photosynthesis did not saturate even at high irradiance. The high water use efficiencies measured in the grass may be one of the features explaining the presence of this species in the maritime Antarctic. The net photosynthesis response to intercellular CO2 (A/ci) for D. antarctica was typical of a C3 plant. Exposure to a biologically effective UV-B irradiance of 0.74 W M-2 did not result in any significant change in either the maximum rate of photosynthesis at saturating CO2 and light, or in the initial carboxylation efficiency of Rubisco. (Vc,max). Furthermore while ambient (or enhanced) solar UV-B did not affect photochemical yield, measured in the field, of C. quitensis and D. antarctica, UV-B enhancement did affect negatively photochemical yield in S. uncinata. In D. antarctica plants, exposure to UV-B at low irradiances elicited increased flavonoid synthesis. The observed effects of UV-B enhancement on the moss (decreased photochemical yield) and the grass (increase in flavonoids) require further, separate investigation.
-
Many invertebrates show flexibility in their life cycles and are likely to respond to changes in climate as they have in the past. However, changes in temperature and photoperiod may disturb the life cycles of some existing polar invertebrates while continuing to constrain the polewards migration of more temperate species. Higher plants are likely to have higher productivity as temperatures and atmospheric CO2 levels increase but this productivity will be reduced by exposure to increasing UV-B radiation. Higher plants migrate more slowly than the rate at which climate is predicted to change and many species will be trapped in supra-optimal climates. Both mosses and lichens can migrate faster than higher plants, propagules of non-polar species already reaching the Antarctic, but they have fewer mechanisms of responding to changing environments. Polar vegetation and ecosystems provide feedback to the climate system: positive feedbacks are associated with decreases in reflectivity and increased carbon emissions from warm ing soils. In the Antarctic, feedback and responses to environmental change will be smaller than in the Arctic because of the less responsive cryptogams which dominate the Antarctic, the paucity of Antarctic soils, and geographical barriers to plant and invertebrate migrations.
-
The bipolar foliose lichen Solorina spongiosa (Sm.) Anzi is reported from James Ross Island, Antarctica, where it grows on moss. This is only the third known occurrence of this lichen from the Southern Hemisphere, the other localities being in Tierra del Fuego and New Zealand. Its morphology resembles that of the New Zealand population and arctic-alpine populations from the Northern Hemisphere, although there are some differences in apothecial and spore size. As elsewhere, it occupies base-rich habitats colonized by predominantly calcicolous mosses and lichens.
Explore
Topic
- moser
- alger (1)
- Antarktis (8)
- biodiversitet (2)
- biologi (2)
- botanikk (8)
- Bouvetøya (2)
- bryozoa (1)
- Dronning Maud Land (1)
- ekspedisjoner (2)
- flora (2)
- fotosyntese (1)
- fugler (1)
- fylogenetikk (1)
- fytososiologi (2)
- kjemiske analyser (1)
- klimaendringer (3)
- kryptogamer (1)
- lav (8)
- mikroklima (1)
- miljøendringer (1)
- NARE 1976/77 (2)
- NARE 1978/79 (2)
- NARE 1984/85 (1)
- økologi (2)
- planter (8)
- plantesosiologi (1)
- seler (1)
- virvelløse dyr (1)
Resource type
- Book Section (2)
- Journal Article (9)
Publication year
Online resource
- yes (11)