Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 3 resources
-
Nitrate in snow is subject to post-depositional processing, which leads to a net loss and redistribution within the snowpack. The relative importance of post-depositional loss processes such as the volatilization of nitric acid (HNO3) and photolysis of nitrate has long been debated. Changes in nitrate and chloride concentrations in the snowpack were investigated at H128 (69°23.584’S, 41°33.712’E), an Antarctic coastal site approximately 100 km from Syowa Station in East Antarctica from December 2015 to February 2016. Results indicate that chloride migrated to deeper sites within the snowpack under the influence of water vapour movement. Moreover, 50% of the nitrate on surface snow was lost to photolysis, and approximately 20% of the nitrate was absent at a depth of 40 cm. To enhance our knowledge of the Antarctic geochemical cycle, this study is the first to suggest chloride ion movement in snowpacks or significant nitrate loss for any Antarctic coastal site.
-
Q1, an organochlorine component with the molecular formula C(9)H(3)Cl(7)N(2) and of unknown origin was recently identified in seal blubber samples from the Namibian coast (southwest of Africa) and the Antarctic. In these samples, Q1 was more abundant than PCBs and on the level of DDT residues. Furthermore, Q1 was more abundant in seals from the Antarctic than the Arctic. To prove this assumption, gas chromatography-electron-capture negative ion mass spectrometry (GC/ECNI-MS), which is sensitive and selective for Q1, allowed for screening of traces of Q1 even in samples with particularly high levels of other organochlorine contaminants. Q1 was isolated by high-performance liquid chromatography (HPLC) from a skua liver sample. A 1:1 mixture with trans-nonachlor in electron-capture detectors (ECDs) was used to determine the relative response factor with ECNI-MS. The ECNI-MS response of Q1 turned out to be 4.5 times higher than that of trans-nonachlor in an ECD. With GC/ECNI-MS in the selected ion-monitoring mode, four Antarctic and four Arctic air samples were investigated for the presence of Q1. In the Antarctic air samples, Q1 levels ranged from 0.7 to 0.9 fg/m(3). In Arctic air samples, however, Q1 was below the detection limit (<0.06 fg/m(3) or 60 ag/m(3)). We also report on high Q1 levels in selected human milk samples (12-230 microg/kg lipid) and, therefore, suggested that the unknown Q1 is an environmental compound whose origin and distribution should be investigated in detail. Our data confirm that Q1 is a bioaccumulative natural organochlorine product. Detection of a highly chlorinated natural organochlorine compound in air and human milk is novel.
-
The potential of universal calibration using capillary gas chromatography combined with atomic emission detection was evaluated for several chlorine- and sulphur-containing compounds of environmental interest. The elemental responses obtained for C, H, Cl and S were found to be affected by the molecular structure. Rapid determination of several analytes was accomplished using a single calibration graph based on one randomly selected reference compound, but 10–30% errors relative to the actual concentrations were observed in several instances. The results were significantly improved by using reference compounds with structures similar to those of the analytes of interest. the practical utility of universal calibration is illustrated by the determination of pesticides in stomach oil deposits from birds living in Antarctica.
Explore
Topic
- kromatografi
- Antarktis (3)
- biokjemi (1)
- forurensning (1)
- fugler (1)
- geokjemi (1)
- kjemi (1)
- miljøgifter (1)
- miljøovervåking (1)
- observasjoner (1)
- ozon (1)
- petreller (1)
- snø (1)
- temperatur (1)
- toksikologi (1)
Resource type
- Journal Article (3)
Publication year
-
Between 1900 and 1999
(1)
-
Between 1990 and 1999
(1)
- 1992 (1)
-
Between 1990 and 1999
(1)
-
Between 2000 and 2025
(2)
-
Between 2000 and 2009
(1)
- 2000 (1)
-
Between 2020 and 2025
(1)
- 2020 (1)
-
Between 2000 and 2009
(1)