Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 19 resources
-
Active subglacial lakes beneath the Antarctic Ice Sheet provide insights into the dynamic subglacial environment, with implications for ice-sheet dynamics and mass balance. Most previously identified lakes have been found upstream (>100 km) of fast-flowing glaciers in West Antarctica, and none have been found in the coastal region of Dronning Maud Land (DML) in East Antarctica. The regional distribution and extent of lakes as well as their timescales and mechanisms of filling–draining activity remain poorly understood. We present local ice surface elevation changes in the coastal DML region that we interpret as unique evidence of seven active subglacial lakes located under slowly moving ice near the grounding line margin. Laser altimetry data from ICESat-2 and ICESat (Ice, Cloud, and Land Elevation Satellites) combined with multi-temporal Reference Digital Elevation Model of Antarctica (REMA) strips reveal that these lakes actively fill and drain over periods of several years. Stochastic analyses of subglacial water routing together with visible surface lineations on ice shelves indicate that these lakes discharge meltwater across the grounding line. Two lakes are within 15 km of the grounding line, while another three are within 54 km. Ice flows 17–172 m a−1 near these lakes, much slower than the mean ice flow speed near other active lakes within 100 km of the grounding line (303 m a−1). Our results improve knowledge of subglacial meltwater dynamics and evolution in this region of East Antarctica and provide new observational data to refine subglacial hydrological models.
-
The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve knowledge about the bed topography and investigate controls of fast ice flow. Recovery Glacier is underlain by an 800 km long trough. Its fast flow is controlled by subglacial water in its upstream and topography in its downstream region. Fast flow of Slessor Glacier is controlled by the presence of subglacial water on a rough crystalline bed. Past ice flow of adjacent Recovery and Slessor Glaciers was likely connected via the newly discovered Recovery-Slessor Gate. Changes in direction and speed of past fast flow likely occurred for upstream parts of Recovery Glacier and between Slessor Glacier and Bailey Ice Stream. Similar changes could also reoccur here in the future.
-
Hypothesized drawdown of the East Antarctic Ice Sheet through the “bottleneck” zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could however drive ice divide migration and increase mass discharge from interior West Antarctica to the Southern Ocean.
-
A fast-flowing tributary of Recovery ice stream penetrates more than 500 km into the interior of East Antarctica. Recent satellite-based studies found surface features in the onset area of this tributary that indicate a significant subglacial hydraulic system, including four large smooth basins, the typical surface expression of large subglacial lakes, as well as eleven smaller areas over which ice-sheet surface elevations rapidly changed by discharge/filling of subglacial water. Here we present the first ice-penetrating radar evidence of subglacial conditions in this area. We identified a distinct ice-water interface only over a limited area within the boundaries of the investigated large smooth basins, previously hypothesized to be water-filled lakes. The radar characteristics in some areas are similar to those of a drained lake, indicating that parts of the bed are wet, but not a typical lake. We also find evidence for discrete water bodies outside of the lake boundaries. The lines of evidence indicate that the northern most two Recovery Lakes have recently drained.
-
A large-scale force budget was applied using a combination of remote-sensing and field data from Jutulstraumen, Dronning Maud Land, Antarctica. In the grounded area, more than 95 % of ice flow is balanced by basal friction. In a partly floating section near the grounding-line area, on average lateral drag provides 38% of resistance to flow. Measurement uncertainties were propagated through the calculation of forces. The accuracies of strain rates derived from satellite data (Landsat thematic mapper) were found adequate to calculate meaningful force-balance terms. For the floating section, where lateral forces contribute to controlling flow, the main contribution to errors in the force budget is uncertainty in the rate factor for the flow law of ice. For grounded sections, the uncertainty in ice thickness, as measured by ground-penetrating radar, contributes more or less equally to errors in the force budget as does that in the rate factor.
-
A mass-balance programme was initiated on Jutulstraumen ice stream, western Dronning Maud Land,Antarctica, during the austral summer 1992-93. As a part of the mass-balance programme, accumulation rate was measured along the centre line of Jutulstraumen from the shelf edge up to the plateau at about 2500 m a.s.l. Accumulation distribution obtained from seven shallow firn cores and 48 slake readings is presented. The overall net accumulation trend displays a decreasing accumulation with increasing elevation and distance to coast, but on both the mesoscale and microscale there are significant variations. This is due to complex patterns of precipitation controlled by orography and redistribution by katabatic winds. The local accumulation distribution (few km scale) was found to be dependent on downslope surface gradient (aspect north, northwest), and variations up to 100% were found over distances of less than 3 km. The large variation in accumulation is important when selecting new core sites and for interpretation of temporal and spatial variations in accumulation derived from firn cores.
-
Stresses and velocities at depth are calculated across Jutulstraumen, an ice stream in Dronning Maud Land, draining about 1% of the Antarctic ice sheet. The force-balance study is based on data from kinematic GPS measurements on three strain nets, each consisting of 3 × 3 stakes. The maximum measured velocity is 443 m a−1 and the velocity variation over short distances is large compared with studied ice streams in West Antarctica. The surface topography together with the measured velocities across the profile indicate that the bottom topography has a great influence on the flow direction, even where the ice thickness is more than 2000 m. The basal shear stresses are calculated as 180, 227 and 146 kPa in the three Strain nets, while the corresponding driving stresses are 180, 122 and 111 kPa (±5%). The heat produced by sliding and internal deformation is sufficient to keep the base at the pressure-melting point. The annual basal melting is estimated to be about 60 mm. Investigations on the effect of temperature softening show that the flow parameter’s influence on the effective strain rate is more important than the flow parameter’s direct softening in the flow low alone. The mass flow calculated by the force-balance method is between 87 and 96% of pure plug flow and total discharge is calculated to be 13.3 ± 10 km3a-1.
Explore
Topic
- isstrøm
- akkumulasjon (4)
- Antarktis (7)
- Dronning Maud Land (12)
- ekspedisjoner (3)
- firnsnø (1)
- fjernanalyse (1)
- forskning (3)
- fysisk geografi (1)
- geofysikk (4)
- geografi (1)
- geologi (2)
- glasiologi (16)
- havnivåstigning (1)
- innlandsis (5)
- is (1)
- isbre (2)
- isbreer (2)
- isfront (1)
- isgjennomtrengende (1)
- isshelf (3)
- kalving (1)
- klimaendringer (2)
- kontinentalstiging (1)
- målinger (1)
- marin geologi (1)
- morfologi (1)
- NARE 1989/90 (1)
- NARE 1992/93 (2)
- NARE 1993/94 (1)
- NARE 1996/97 (2)
- nunataker (1)
- radar observasjoner (1)
- radarundersøkelser (1)
- satellite altimetri (1)
- satellittbilder (1)
- sedimentologi (1)
- seismologi (1)
- snø (2)
- subglasial innsjø (2)
- topografi (2)
Resource type
- Book Section (8)
- Journal Article (11)
Publication year
-
Between 1900 and 1999
(11)
-
Between 1960 and 1969
(1)
- 1965 (1)
- Between 1970 and 1979 (2)
- Between 1990 and 1999 (8)
-
Between 1960 and 1969
(1)
-
Between 2000 and 2025
(8)
- Between 2000 and 2009 (4)
- Between 2010 and 2019 (3)
-
Between 2020 and 2025
(1)
- 2025 (1)