Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 9 resources
-
Studying the biogeography of amphipod crustaceans is of interest because they play an important role at lower trophic levels in ecosystems. Because they lack a planktonic larval stage, it has been hypothesized that marine benthic amphipod crustaceans may have short dispersal distances, high endemicity, and spatial turnover in species composition, and consequently high global species richness. In this study, we examined over 400000 distribution records of 4876 amphipod species, and identified 12 regions of endemicity. The number and percent of endemic species peaked at 30°-35°S and coincided with 3 of these regions of high endemicity: Australia, New Zealand, and southern Africa. Pelagic species of marine amphipod crustaceans were more cosmopolitan than benthic species. The latitudinal patterns of richness (alpha, gamma, and ES50) and species turnover were at least bimodal. Most occurrence records and greater alpha and gamma richness were in mid-latitudes, reflecting sampling bias. Both ES50 and beta diversity had similar richness in the tropics, mid-latitudes, and on the Antarctic shelf around 70°S. These 2 indices exhibited a sharp dip in the deep Southern Ocean at 55°S. ES50 peaked at 30°-35°S and a small dip was apparent near the equator at 5°-10°N. Beta diversity was driven mostly by turnover rather than nestedness. These findings support the need for conservation in each realm of species endemicity and for amphipods, particularly in Antarctica and the coastal mid-latitudes (30°-35°S) of the Southern Hemisphere. KEYWORDS: Endemicity · Latitudinal gradients · Conservation · Species richness · Species turnover
-
It is generally accepted that Antarctic terrestrial diversity decreases as latitude increases, but latitudinal patterns of several organisms are not always as clear as expected. The Victoria Land region is rich in lakes and ponds and spans 8 degrees of latitude that encompasses gradients in factors such as solar radiation, temperature, ice cover and day length. An understanding of the links between latitudinally driven environmental and biodiversity changes is essential to the understanding of the ecology and evolution of Antarctic biota and the formulation of hypotheses about likely future changes in biodiversity. As several studies have demonstrated that photosynthetic pigments are an excellent, although underused, tool for the study of lacustrine algal communities, the aim of the present study was to investigate variations in algal biomass and biodiversity across the latitudinal gradient of Victoria Land using sedimentary pigments. We test the hypothesis that the biodiversity of freshwater environments decreases as latitude increases. On the basis of our results, we propose using the number of sedimentary pigments as a proxy for algal diversity and the sum of chlorophyll a and bacteriochlorophyll a with their degradation derivatives as an index of biomass. Overall, our data show that biomass and diversity decrease as latitude increases but local environmental conditions, in particular, natural levels of eutrophy, can affect both productivity and diversity. Keywords: Biodiversity; photosynthetic pigments; proxy; continental Antarctica; sediments; biogeography.
-
Recent studies have concluded that different water bodies in the ocean can contain different microbial communities. The goal of the present study was to determine if biogeographic patterns are present for aquatic microbes in waters which meet around the South Shetland Islands(SSI), Antarctica. Prokaryotic and eukaryotic marine microbial communities were monitored during the 2007 austral summer by use of polymerase chain reaction (PCR) and denaturing gradientgel electrophoresis (DGGE) of small subunit ribosomal DNA. Hydrographic properties, nutrients and chlorophyll a were also measured. There was an onshore to offshore gradient in temperature, salinity and iron concentration and a unimodal distribution of chlorophyll a concentration in rela-tion to the middle of this gradient that occurred near the SSI. The differences in microbial community structure among stations in the studied area were correlated with both geographical distance and environmental factors. For eukaryotes, the correlation was strongest for environment, where as it was strongest for geographical distance for the prokaryotes. Eukaryotic and prokaryotic community structures were highly correlated. Surface water from the Weddell Sea had a different community of eukaryotes than the water in the Antarctic Circumpolar Current in the Drake Passage, whereas the prokaryotic community was not significantly different. The area close to theSSI where the 2 water types mix had the highest chlorophyll concentration and significantly dif-ferent communities of eukaryotes and prokaryotes from both of the inflowing water types. These results suggest that the prokaryote community structure was more affected by productivity thanby environmental variables. KEY WORDS: Microbial biogeography. Microbial community. Natural iron enrichment. Southern Ocean.
-
Despite warm polar climates and low meridional temperature gradients, a number of different high-latitude plankton assemblages were, to varying extents, dominated by endemic species during most of the Paleogene. To better understand the evolution of Paleogene plankton endemism in the high southern latitudes, we investigate the spatiotemporal distribution of the fossil remains of dinoflagellates, i.e., organic-walled cysts (dinocysts), and their response to changes in regional sea surface temperature (SST). We show that Paleocene and early Eocene (∼65–50 Ma) Southern Ocean dinocyst assemblages were largely cosmopolitan in nature but that a distinct switch from cosmopolitan-dominated to endemic-dominated assemblages (the so-called “transantarctic flora”) occurred around the early-middle Eocene boundary (∼50 Ma). The spatial distribution and relative abundance patterns of this transantarctic flora correspond well with surface water circulation patterns as reconstructed through general circulation model experiments throughout the Eocene. We quantitatively compare dinocyst assemblages with previously published TEX86–based SST reconstructions through the early and middle Eocene from a key locality in the southwest Pacific Ocean, ODP Leg 189 Site 1172 on the East Tasman Plateau. We conclude that the middle Eocene onset of the proliferation of the transantarctic flora is not linearly correlated with regional SST records and that only after the transantarctic flora became fully established later in the middle Eocene, possibly triggered by large-scale changes in surface-ocean nutrient availability, were abundances of endemic dinocysts modulated by regional SST variations.
-
Several biogeographical studies have already been performed on the ascidians of the Antarctic region. However, new data obtained in the last few years have led us to a revision of the biogeography of this fauna. To examine the biogeographical structure of the Antarctic region, we divided it into 10 sectors, depending on the principal geographical features, and then applied cluster analysis and a multi-dimensional scaling ordination to a presence/absence matrix of species for each biogeographical area. Our study shows that Antarctic ascidians are a very homogeneous fauna, with a high level of endemism in the whole region (25–51% of Antarctic endemic species per sector), but with a low percentage of sector endemism (only up to 10%). This probably results from isolation arising from the Antarctic Convergence, and the vast geographical distances from adjacent regions, as well as from the relative constancy of the hydrographical conditions and the dispersal of organisms through circumpolar currents. In fact, cosmopolitan species represented only 0–7% of the total ascidian fauna in all sectors. Only the Bellingshausen Sea (low sample size), Bouvetøya (young and isolated, with an impoverished ascidian fauna) and the South Sandwich Islands (also young and isolated) are relatively separated. The insular sectors were more closely related to the South America and sub- Antarctic regions than the continental ones, showing a latitudinal gradient.
-
Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.
-
The taxonomic listing given in Lichens of Antarctica and South Georgia (Øvstedal & Lewis Smith 2001) has been updated. 17 additional taxa of lichenised fungi are described, including several nomenclatural changes. 14 of these are considered as new records for the Antarctic and one is new to South Georgia. One is described as new to science.
-
Much evidence suggests that life originated in hydrothermal habitats, and for much of the time since the origin of cyanobacteria (at least 2·5 Ga ago) and of eukaryotic algae (at least 2·1 Ga ago) the average sea surface and land surface temperatures were higher than they are today. However, there have been at least four significant glacial episodes prior to the Pleistocene glaciations. Two of these (approx. 2·1 and 0·7 Ga ago) may have involved a ‘Snowball Earth’ with a very great impact on the algae (sensu lato) of the time (cyanobacteria, Chlorophyta and Rhodophyta) and especially those that were adapted to warm habitats. By contrast, it is possible that heterokont, dinophyte and haptophyte phototrophs only evolved after the Carboniferous–Permian ice age (approx. 250 Ma ago) and so did not encounter low (≤5 °C) sea surface temperatures until the Antarctic cooled some 15 Ma ago. Despite this, many of the dominant macroalgae in cooler seas today are (heterokont) brown algae, and many laminarians cannot reproduce at temperatures above 18–25 °C. By contrast to plants in the aerial environment, photosynthetic structures in water are at essentially the same temperature as the fluid medium. The impact of low temperatures on photosynthesis by marine macrophytes is predicted to favour diffusive CO2 entry rather than a CO2‐concentrating mechanism. Some evidence favours this suggestion, but more data are needed.
Explore
Topic
- biogeografi
- alger (2)
- Antarktis (2)
- bentos (1)
- biodiversitet (2)
- biomasse (1)
- botanikk (2)
- crustacea (1)
- ekspedisjoner (1)
- fauna (1)
- ferskvann (1)
- forskning (1)
- fossiler (1)
- fotosyntese (1)
- fytoplankton (1)
- innsjø (1)
- krepsdyr (1)
- lav (1)
- makroalger (1)
- marin biologi (4)
- marinbiologi (1)
- marine økosystemer (1)
- mikroorganismer (1)
- økologi (1)
- økosystemer (1)
- oseanografi (1)
- overflatevann (1)
- paleobotanikk (1)
- paleoseanografi (1)
- plankton (2)
- planteplankton (1)
- planter (1)
- sedimenter (1)
- sekkdyr (1)
- Sørishavet (7)
- taksonomi (1)
- zoogeografi (2)
Resource type
- Journal Article (9)
Publication year
-
Between 1900 and 1999
(1)
-
Between 1970 and 1979
(1)
- 1976 (1)
-
Between 1970 and 1979
(1)
-
Between 2000 and 2025
(8)
- Between 2000 and 2009 (4)
- Between 2010 and 2019 (3)
-
Between 2020 and 2025
(1)
- 2020 (1)
Online resource
- yes (9)