Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 46 resources

  • ABSTRACT Here, we examined the occurrence of plant-associated aerobic anoxygenic phototrophic bacteria (AAPB) across polar regions. Recently found in polar soils and cold-climate plants, AAPBs are photoheterotrophs that rely on environmental organic carbon but capture solar energy via anoxygenic photosynthesis. We revealed the abundance of AAPBs by extracting bacteria from plant tissues and imaging the colonies with bacteriochlorophyll-based near-infrared fluorescence. The taxonomic distribution of AAPBs was determined via 16S rRNA gene analysis. From the northern hemisphere, we describe AAPBs from the leaf endo- and phyllospheres of numerous sub- and Arctic plant species in Northern Finland, Svalbard, and Greenland. In the southern hemisphere, we focused on AAPBs in the root and leaf endospheres and the phyllospheres of Deschampsia antarctica in Chilean Patagonia and maritime Antarctica. Additionally, we describe AAPB from the tissues of several other plant species in Patagonia. We found AAPBs commonly associated with the sampled plant species across both hemispheres. A diversity of Alphaproteobacteria was found to contain the AAP capability: at all sampling sites, Sphingomonas was the most abundant taxon (up to 60%), while Methylobacteria made up a notable proportion of sub-Arctic and sub-Antarctic AAPB samples (up to 32%). In contrast to previous studies describing Methylobacteria frequently in various plant communities, AAP-containing Methylobacteria were virtually absent from our high-latitude sites. With diverse AAPB taxa found ubiquitously across polar regions and plant tissues, our results call attention to the potential ecological interaction between AAPBs and their plant hosts.

  • Antarctica harbors many distinctive features of life, yet much about the diversity and functioning of Antarctica?s life remains unknown. Evolutionary histories and functional ecology are well understood only for vertebrates, whereas research on invertebrates is largely limited to species descriptions and some studies on environmental tolerances. Knowledge on Antarctic vegetation cover showcases the challenges of characterizing population trends for most groups. Recent community-level microbial studies have provided insights into the functioning of life at its limits. Overall, biotic interactions remain largely unknown across all groups, restricted to basic information on trophic level placement. Insufficient knowledge of many groups limits the understanding of ecological processes on the continent. Remedies for the current situation rely on identifying the caveats of each ecological discipline and finding targeted solutions. Such precise delimitation of knowledge gaps will enable a more aware, representative, and strategic systematic conservation planning of Antarctica.

  • Understanding population connectivity in the marine realm is crucial for conserving biodiversity, managing fisheries, and predicting species responses to environmental change. This is particularly important in Antarctic waters, where unique evolutionary histories and extreme conditions shape marine biodiversity. The longfin icedevil Aethotaxis mitopteryx is an elusive notothenioid fish endemic to Antarctic waters. To explore population connectivity in A. mitopteryx, we used RAD-seq to investigate the genetic differentiation of two populations, one from the Eastern Weddell Sea and the other from the Eastern Antarctic Peninsula, two regions of ecological relevance greatly impacted by climate change. Despite spatial separation, analyses revealed no significant genetic differentiation between the two populations, suggesting extensive gene flow. A pronounced genetic distinction was, however, observed between males and females. This differentiation was largely localized to a specific chromosome, implying a genetic sex determination system with males being the heterogametic sex. These findings contribute novel insights into the genetic structure of A. mitopteryx populations and expand our understanding of genetic mechanisms in Antarctic fish. This study provides a foundation for further investigations into the evolutionary and ecological implications of sex chromosome differentiation in extreme environments.

  • Understanding population connectivity in the marine realm is crucial for conserving biodiversity, managing fisheries, and predicting species responses to environmental change. This is particularly important in Antarctic waters, where unique evolutionary histories and extreme conditions shape marine biodiversity. The longfin icedevil Aethotaxis mitopteryx is an elusive notothenioid fish endemic to Antarctic waters. To explore population connectivity in A. mitopteryx, we used RAD-seq to investigate the genetic differentiation of two populations, one from the Eastern Weddell Sea and the other from the Eastern Antarctic Peninsula, two regions of ecological relevance greatly impacted by climate change. Despite spatial separation, analyses revealed no significant genetic differentiation between the two populations, suggesting extensive gene flow. A pronounced genetic distinction was, however, observed between males and females. This differentiation was largely localized to a specific chromosome, implying a genetic sex determination system with males being the heterogametic sex. These findings contribute novel insights into the genetic structure of A. mitopteryx populations and expand our understanding of genetic mechanisms in Antarctic fish. This study provides a foundation for further investigations into the evolutionary and ecological implications of sex chromosome differentiation in extreme environments.

  • Background: Plankton is the essential ecological category that occupies the lower levels of aquatic trophic networks, representing a good indicator of environmental change. However, most studies deal with distribution of single spe- cies or taxa and do not take into account the complex of biological interactions of the real world that rule the ecologi- cal processes. Results: This study focused on analyzing Antarctic marine phytoplankton, mesozooplankton, and microzooplankton, examining their biological interactions and co-existences. Field data yielded 1053 biological interaction values, 762 coexistence values, and 15 zero values. Six phytoplankton assemblages and six copepod species were selected based on their abundance and ecological roles. Using 23 environmental descriptors, we modelled the distribution of taxa to accurately represent their occurrences. Sampling was conducted during the 2016–2017 Italian National Antarctic Programme (PNRA) ‘P-ROSE’ project in the East Ross Sea. Machine learning techniques were applied to the occurrence data to generate 48 predictive species distribution maps (SDMs), producing 3D maps for the entire Ross Sea area. These models quantitatively predicted the occurrences of each copepod and phytoplankton assemblage, providing crucial insights into potential variations in biotic and trophic interactions, with significant implications for the man- agement and conservation of Antarctic marine resources. The Receiver Operating Characteristic (ROC) results indi- cated the highest model efficiency, for Cyanophyta (74%) among phytoplankton assemblages and Paralabidocera antarctica (83%) among copepod communities. The SDMs revealed distinct spatial heterogeneity in the Ross Sea area, with an average Relative Index of Occurrence values of 0.28 (min: 0; max: 0.65) for phytoplankton assemblages and 0.39 (min: 0; max: 0.71) for copepods. Conclusion: The results of this study are essential for a science-based management for one of the world’s most pris- tine ecosystems and addressing potential climate-induced alterations in species interactions. Our study emphasizes the importance of considering biological interactions in planktonic studies, employing open access and machine learning for measurable and repeatable distribution modelling, and providing crucial ecological insights for informed conservation strategies in the face of environmental change.

  • Diatoms of the genus Pseudo-nitzschia, known for their potential toxicity, are integral to the phytoplankton community of the Southern Ocean, which surrounds Antarctica. Despite their ecological importance, the diversity and toxicity of Pseudo-nitzschia in this region remain underexplored. Globally, these diatoms are notorious for forming harmful algal blooms in temperate and tropical waters, causing significant impacts on marine life, ecosystems, and coastal economies. However, detailed information on the diversity, morphology, and toxicity of Pseudo-nitzschia species in Antarctic waters is limited, with molecular characterizations of these species being particularly scarce. During three research expeditions to the Southern Ocean, monoclonal strains of Pseudo-nitzschia were isolated and cultivated. Stored samples from a fourth expedition, the Brategg expedition, were used to complete the description of particularly P. turgidula. Through electron microscopy and molecular analysis, two novel species were identified—Pseudo-nitzschia meridionalis sp. nov. and Pseudo-nitzschia glacialis sp. nov.—alongside the previously described species P. subcurvata, P. turgiduloides, and P. turgidula. Toxin assays revealed no detectable levels of domoic acid in P. turgiduloides, P. turgidula, P. meridionalis sp. nov. and P. glacialis sp. nov. Conversely, P. subcurvata was reported in a related study to produce domoic acid and its isomer, isodomoic acid C. These findings emphasize the need for comprehensive research on the phytoplankton of Antarctic waters, which is currently a largely uncharted domain. With the looming threat of climate change, understanding the dynamics of potentially harmful algal populations in this region is becoming increasingly critical.

  • Incomplete species inventories for Antarctica represent a key challenge for comprehensive ecological research and conservation in the region. Additionally, data required to understand population dynamics, rates of evolution, spatial ranges, functional traits, physiological tolerances and species interactions, all of which are fundamental to disentangle the different functional elements of Antarctic biodiversity, are mostly missing. However, much of the fauna, flora and microbiota in the emerged ice-free land of the continent have an uncertain presence and/or unresolved status, with entire biodiversity compendia of prokaryotic groups (e.g. bacteria) being missing. All the available biodiversity information requires consolidation, cross-validation, re-assessment and steady systematic inclusion in order to create a robust catalogue of biodiversity for the continent.We compiled, completed and revised eukaryotic species inventories present in terrestrial and freshwater ecosystems in Antarctica in a new living database: terrANTALife (version 1.0). The database includes the first integration in a compendium for many groups of eukaryotic microorganisms. We also introduce a first catalogue of amplicon sequence variants (ASVs) of prokaryotic biodiversity. Available compendia and literature to date were searched for Antarctic terrestrial and freshwater species, integrated, taxonomically harmonised and curated by experts to create comprehensive checklists of Antarctic organisms. The final inventories comprises 470 animal species (including vertebrates, free-living invertebrates and parasites), 306 plants (including all Viridiplantae: embryophytes and green algae), 997 fungal species and 434 protists (sensu lato). We also provide a first account for many groups of microorganisms, including non-lichenised fungi and multiple groups of eukaryotic unicellular species (Stramenophila, Alveolata and Rhizaria (SAR), Chromists and Amoeba), jointly referred to as "protists". In addition, we identify 1753 bacterial (obtained from 348117 ASVs) and 34 archaeal genera (from 1848 ASVs), as well as, at least, 14 virus families. We formulate a basic tree of life in Antarctica with the main lineages listed in the region and their “known-accepted-species” numbers.

  • Terrestrial vegetation communities across Antarctica are characteristically sparse, presenting a challenge for mapping their occurrence using remote sensing at the continent scale. At present there is no continent-wide baseline record of Antarctic vegetation, and large-scale area estimates remain unquantified. With local vegetation distribution shifts now apparent and further predicted in response to environmental change across Antarctica, it is critical to establish a baseline to document these changes. Here we present a 10 m-resolution map of photosynthetic life in terrestrial and cryospheric habitats across the entire Antarctic continent, maritime archipelagos and islands south of 60° S. Using Sentinel-2 imagery (2017–2023) and spectral indices, we detected terrestrial green vegetation (vascular plants, bryophytes, green algae) and lichens across ice-free areas, and cryospheric green snow algae across coastal snowpacks. The detected vegetation occupies a total area of 44.2 km2, with over half contained in the South Shetland Islands, altogether contributing just 0.12% of the total ice-free area included in the analysis. Due to methodological constraints, dark-coloured lichens and cyanobacterial mats were excluded from the study. This vegetation map improves the geospatial data available for vegetation across Antarctica, and provides a tool for future conservation planning and large-scale biogeographic assessments.

  • Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.

  • Global targets for area-based conservation and management must move beyond threshold-based targets alone and must account for the quality of such areas. In the Southern Ocean around Antarctica, a region where key biodiversity faces unprecedented risks from climate change and where there is a growing demand to extract resources, a number of marine areas have been afforded enhanced conservation or management measures through two adopted marine protected areas (MPAs). However, evidence suggests that additional high quality areas could benefit from a proposed network of MPAs. Penguins offer a particular opportunity to identify high quality areas because these birds, as highly visible central-place foragers, are considered indicator species whose populations reflect the state of the surrounding marine environment. We compiled a comprehensive dataset of the location of penguin colonies and their associated abundance estimates in Antarctica. We then estimated the at-sea distribution of birds based on information derived from tracking data and through the application of a modified foraging radius approach with a density decay function to identify some of the most important marine areas for chick-rearing adult penguins throughout waters surrounding Antarctica following the Important Bird and Biodiversity Area (IBA) framework. Additionally, we assessed how marine IBAs overlapped with the currently adopted and proposed network of key management areas (primarily MPAs), and how the krill fishery likely overlapped with marine IBAs over the past five decades. We identified 63 marine IBAs throughout Antarctic waters and found that were the proposed MPAs to be adopted, the permanent conservation of high quality areas for penguin species would increase by between 49 and 100% depending on the species. Furthermore, our data show that, despite a generally contracting range of operation by the krill fishery in Antarctica over the past five decades, a consistently disproportionate amount of krill is being harvested within marine IBAs compared to the total area in which the fishery operates. Our results support the designation of the proposed MPA network and offer additional guidance as to where decision-makers should act before further perturbation occurs in the Antarctic marine ecosystem.

  • In this article, we analyze the impacts of climate change on Antarctic marine ecosystems. Observations demonstrate large-scale changes in the physical variables and circulation of the Southern Ocean driven by warming, stratospheric ozone depletion, and a positive Southern Annular Mode. Alterations in the physical environment are driving change through all levels of Antarctic marine food webs, which differ regionally. The distributions of key species, such as Antarctic krill, are also changing. Differential responses among predators reflect differences in species ecology. The impacts of climate change on Antarctic biodiversity will likely vary for different communities and depend on species range. Coastal communities and those of sub-Antarctic islands, especially range-restricted endemic communities, will likely suffer the greatest negative consequences of climate change. Simultaneously, ecosystem services in the Southern Ocean will likely increase. Such decoupling of ecosystem services and endemic species will require consideration in the management of human activities such as fishing in Antarctic marine ecosystems.

  • An urgent necessity to understand the effect of climatic change on scleractinian cold-water coral (CWC) ecosystems has arisen due to increasing ocean warming and acidification over the last decades. Here, presence-absence records of 12 scleractinian CWC species from research expeditions and the literature were compiled and merged with model-generated pseudo-absence data and 14 environmental variables. The best-fitting results of 9 species distribution models (SDMs) were combined to an ensemble habitat suitability model for CWCs in the northern Southern Ocean (Weddell Sea and Antarctic Peninsula) by means of the open-source R package "biomod2". Furthermore, 2 future scenarios of increasing bottom sea temperature were used to investigate the spatial response of scleractinians to temperature change. The resulting (current scenario) potential ecological niches were evaluated with good to excellent statistical measures. The results predict that present areas of highest probability of CWC occurrence are around the Antarctic Peninsula, South Orkney Islands and Queen Maud Land, with preference to geomorphic features such as seamounts. The distribution of CWC habitats is mainly driven by distance to coast and ice shelves, bathymetry, benthic calcium carbonate, and temperature. Under warming conditions, CWCs are predicted to expand their distribution range by 6 and 10% in 2037 and 2150, respectively, compared to the present distribution. The future models using increased bottom temperature revealed a stable CWC distribution for most parts of the study area. However, habitat shifts are expected to the Filchner Trough region, the adjacent continental shelves, as well as to the eastern side of the Antarctic Peninsula. KEYWORDS: Scleractinian coral · Ensemble models · Environmental change · Habitat suitability model · Spatial distribution · Weddell Sea. Antarctica

  • Fjords on the West Antarctic Peninsula (WAP) serve as sediment traps, preserving histories of glacial sediment supply. Regional warming trends are expected to change sediment supplies, altering water quality, depositional history, and ecosystem drivers. Our ability to assess magnitudes of these changes is limited by sparse data on modern sediment accumulation. Twelve new cores and four existing cores from Andvord Bay were used to characterize variability in sediment accumulation rates. These range from 1.5 to 7.9 mm/year (0.12 to 0.56 g·cm−2·year−1). Spatial differences and a weak down-fjord gradient in rates suggest diverse sediment sources, including from outside the fjord. This data set provides a comprehensive assessment of sedimentation during the past century, indicating little change in rates due to recent WAP warming, and sets a benchmark for assessing climate-related changes in sediment delivery and ecosystem drivers (e.g., burial disturbance) in the fjord over coming decades.

  • The intertidal fauna of the Antarctic Peninsula has a relatively high species diversity, due to its warmer environment compared to other parts of Antarctica. Marine oligochaetes are, in general, one of the most diverse and ecologically important benthic organism groups, at least in the littoral zone. Antarctica has been one of the least studied areas with regard to oligochaete diversity. Here we report two Lumbricillus species (Lumbricillus antarcticus Stephenson, 1932 and Lumbricillus sejongensis sp. nov.) new to Antarctica, found in a tidal pool on the Barton Peninsula, King George Island. The diversity of this genus remains poorly known for Antarctica and the Subantarctic islands, and what we know is based on a few patchy studies.

  • A decrease in biodiversity and density of terrestrial organisms with increasing altitude and latitude is a well-known ecogeographical pattern. However, studies of these trends are often taxonomically-biased toward well-known organisms and especially those with relatively large bodies, and environmental variability at the local scale may perturb these general effects. Here, we focus on understudied organisms—soil invertebrates—in Antarctic deserts, which are among the driest and coldest places on Earth. We sampled two remote Antarctic sites in the Darwin Glacier area and established an altitudinal gradient running from 210 to 836 m a.s.l. We measured soil geochemistry and organic matter content and linked these parameters with the presence of soil invertebrates. We found three general outcomes, two of which are consistent with general assumptions: (a) the hostile climatic condition of the Darwin Glacier region supports an extremely low diversity of soil metazoans represented by a single nematode species—Scottnema lindsayae; (b) soil geochemistry is the main factor influencing distribution of nematodes at the local scale. Contrary to our expectations, a positive correlation was found between nematode density and altitude. This last observation could be explained by an additional effect of soil moisture as we found this increased with altitude and may be caused by orographic clouds, which are present in this region. To the best of our knowledge such effects have been described in tropical and temperate regions. Potential effect of orographic clouds on soil properties in polar deserts may be a fruitful area of ecological research on soil fauna.

  • Antarctica’s terrestrial ecosystems are vulnerable to impacts resulting from climate change and local human activities. The Antarctic Treaty System (ATS) provides for the designation of protected areas through the Protocol on Environmental Protection to the Antarctic Treaty. Unsystematic use of agreed management tools, including Antarctic Specially Protected Areas (ASPAs), has resulted in a protected area system lacking representation across the full range of Antarctic terrestrial ecosystems and Antarctic Conservation Biogeographic Regions (ACBRs). Systematic Conservation Planning (SCP) methods provide established mechanisms to fulfil ATS protected area designation goals. However, how would a continent-wide ASPA system be delivered should appropriate sites be identified using SCP or other methods? Although the rate of area protection has slowed recently, we show that newer Consultative Parties to the Antarctic Treaty are increasingly active as ASPA proponents and may have scope for further engagement with protected area management activities. Furthermore, all 16 ACBRs were found to be within the operational footprint of at least two Parties, indicating that this current logistical footprint could support the implementation and management of a continent-wide ASPA system. Effective management of a representative Antarctic protected areas system could be delivered through greater participation by those Parties with currently more limited protected area management responsibilities and greater use of remote-sensing technologies for protected area monitoring, where appropriate. Crucially, political will to implement an ASPA system identified through SCP approaches may be greater once a pragmatic means of delivery and effective management has been identified.

  • In this paper we evaluated the composition and abundance of molluscs associated with beds of the red algae Gigartina, located in the South Shetland Islands (Antarctic Peninsula) and the Strait of Magellan (southern Chile). During the summer season of 2013, samples were obtained by scuba diving using a 0.25 m2 quadrat, arranged randomly within the bed. We extracted a total of 15 quadrats per sampling site. For Antarctic Peninsula beds the most abundant species were the bivalve Lissarca miliaris (233 individuals) and the gastropod Laevilacunaria antarctica (94 individuals), while for Strait of Magellan beds the most abundant species was the polyplacophoran Callochiton puniceus (36 individuals). Comparative analysis between the two molluscan assemblages showed significant differences in the faunal composition between the Antarctic Peninsula and Strait of Magellan (f = 64.474; p = 0.0001). Therefore, molluscs reported in both areas are characteristic of their respective biogeographic area. Finally, Gigartina species play an important role in the formation of patterns of abundance and diversity of the communities associated with them.

  • The continental shelf of Antarctica harbours rich suspension-feeding macroinvertebrate communities that are continuously exposed to large populations of free-living microbes. To avoid settlement or fouling by undesirable microorganisms that could cause infection or collapse filter-feeding systems, these macroinvertebrates might regulate the epibiotic microbial mat through chemical interactions. In Antarctic chemical ecology, the antibacterial roles of natural products remain mostly unknown. A necessary first step is to identify organisms that produce compounds with potential ecological relevance. For that reason, we tested the crude organic extracts of 116 taxa of Antarctic benthic organisms for antibacterial activity against a panel of seven strains of marine bacteria. Nine out of 11 phyla tested had antibacterial properties. However, inhibitory activity was quite selective and species-specific. These patterns suggest that Antarctic benthic organisms may produce diverse bioactive metabolites with different antibacterial activities or, alternatively, those contrasting profiles may be shaped by environmental and biological interactions acting at a small spatial scale. The reasons of such selectivity remain to be further investigated and may contribute to the identification of bioactive compounds with pharmaceutical applications.

  • It is generally accepted that Antarctic terrestrial diversity decreases as latitude increases, but latitudinal patterns of several organisms are not always as clear as expected. The Victoria Land region is rich in lakes and ponds and spans 8 degrees of latitude that encompasses gradients in factors such as solar radiation, temperature, ice cover and day length. An understanding of the links between latitudinally driven environmental and biodiversity changes is essential to the understanding of the ecology and evolution of Antarctic biota and the formulation of hypotheses about likely future changes in biodiversity. As several studies have demonstrated that photosynthetic pigments are an excellent, although underused, tool for the study of lacustrine algal communities, the aim of the present study was to investigate variations in algal biomass and biodiversity across the latitudinal gradient of Victoria Land using sedimentary pigments. We test the hypothesis that the biodiversity of freshwater environments decreases as latitude increases. On the basis of our results, we propose using the number of sedimentary pigments as a proxy for algal diversity and the sum of chlorophyll a and bacteriochlorophyll a with their degradation derivatives as an index of biomass. Overall, our data show that biomass and diversity decrease as latitude increases but local environmental conditions, in particular, natural levels of eutrophy, can affect both productivity and diversity. Keywords: Biodiversity; photosynthetic pigments; proxy; continental Antarctica; sediments; biogeography.

Last update from database: 12/1/25, 3:10 AM (UTC)

Explore

Topic

Resource type

Online resource