Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 279 resources
-
Interactions between the Southern Ocean and the Weddell Sea ice shelves are important both to the Antarctic Ice Sheet and to the production of globally significant water masses. Here we review the interaction between the Filchner-Ronne Ice Shelf and the shelf sea in which it floats. The continental shelf processes leading to the production of Weddell Sea deep and bottom waters from the original off-shelf source waters are discussed, and a new view is offered of the initial production of High-Salinity Shelf Water. Data from ship-based measurements at the ice front, from glaciological methods, and from measurements made within the sub–ice shelf cavity itself are used to describe the pattern of flows beneath the ice shelf. We also consider the variability observed within the cavity from tidal to interannual time scales and finish with a discussion of future research priorities in the region.
-
Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W m−2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.
-
Snowmelt processes on Antarctic sea ice are examined. We present a simple snowmelt indicator based on diurnal brightness temperature variations from microwave satellite data. The method is validated through extensive field data from the western Weddell Sea and lends itself to the investigation of interannual and spatial variations of the typical snowmelt on Antarctic sea ice. We use in-situ measurements of physical snow properties to show that despite the absence of strong melting, the summer period is distinct from all other seasons with enhanced diurnal variations of snow wetness. A microwave emission model reveals that repeated thawing and refreezing cause the typical microwave emissivity signatures that are found on perennial Antarctic sea ice during summer. The proposed melt indicator accounts for the characteristic phenomenological stages of snowmelt in the Southern Ocean and detects the onset of diurnal snow wetting. An algorithm is presented to map large-scale snowmelt onset based on satellite data from the period between 1988 and 2006. The results indicate strong meridional gradients of snowmelt onset with the Weddell, Amundsen, and Ross Seas showing earliest (beginning of October) and most frequent snowmelt. Moreover, a distinct interannual variability of melt onset dates and large areas of first-year ice where no diurnal freeze thawing occurs at the surface are determined.
-
The vertical distribution (0–550 m) of zooplankton biomass, and indices of respiration (electron transfer system [ETS]) and structural growth (aminoacyltRNA synthetases activity [AARS]), were studied in waters off the Antarctic Peninsula during the austral summer of 2000. The dominant species were the copepod Metridia gerlachei and the euphausiid Euphausia superba. We observed a vertical krill/copepod substitution in the water column. The zooplankton biomass in the layer at a depth of 200–500 m was of the same magnitude as the biomass in the layer at a depth of 0–200 m, indicating that biomass in the mesopelagic zone is an important fraction of the total zooplankton in Antarctic waters. The metabolic rates of the zooplankton community were sustained by less than 0.5% of the primary production in the area, suggesting that microplankton or small copepods are the main food source. Neither food availability nor predation seemed to control mesozooplankton biomass. The wide time lag between the abundance peak of the dominant copepod (M. gerlachei) and the phytoplankton bloom is suggested to be the main explanation for the low summer zooplankton biomass observed in these waters.
-
Two sediment cores obtained from the continental shelf of the northern South Shetland Islands, West Antarctica, consist of: an upper unit of silty mud, bioturbated by a sluggish current, and a lower unit of well-sorted, laminated silty mud, attributed to an intensified Polar Slope Current. Geochemical and accelerator mass spectrometry 14C analyses yielded evidence for a late Holocene increase in sea-ice extent and a decrease in phytoplankton productivity, inferred from a reduction in the total organic carbon content and higher C : N ratios, at approximately 330 years B.P., corresponding to the Little Ice Age. Prior to this, the shelf experienced warmer marine conditions, with greater phytoplankton productivity, inferred from a higher organic carbon content and C : N ratios in the lower unit. The reduced abundance of Weddell Sea ice-edge bloom species (Chaetoceros resting spores, Fragilariopsis curta and Fragilariopsis cylindrus) and stratified cold-water species (Rhizosolenia antennata) in the upper unit was largely caused by the colder climate. During the cold period, the glacial restriction between the Weddell Sea and the shelf of the northern South Shetland Islands apparently hindered the influx of ice-edge bloom species from the Weddell Sea into the core site. The relative increases in the abundance of Actinocyclus actinochilus and Navicula glaciei, indigenous to the coastal zone of the South Shetland Islands, probably reflects a reduction in the dilution of native species, resulting from the diminished influx of the ice-edge species from the Weddell Sea. We also document the recent reduction of sea-ice cover in the study area in response to recent warming along the Antarctic Peninsula.
-
Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April?May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean?sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a ?blind spot? in our sampling coverage, enabling the establishment of a truly global ocean-observing system.
-
A distinctive halo of sea ice deformation was observed above the Maud Rise seamount in the eastern Weddell Sea in the winter of 2005. The deformation halo is coincident with a halo of low mean ice concentration that is often observed in the region. Monthly mean ice vorticity estimates for the months July through November reveal the deformation zone most clearly in an arc about 100 km northwest of the seamount where there is a strong gradient in the bathymetry at depths of 3000–5000 m. The deformation was computed from satellite-based ice motion vectors derived from Envisat Synthetic Aperture Radar backscatter images. The deformation halo is evidence of a Taylor cap circulation over the seamount, which has been described and analyzed with modeling studies and concurrent oceanographic observations obtained during an extensive field campaign.
-
During the austral winter of 2007 a Weddell Seal tagged with a miniaturized conductivity-temperature-depth (CTD) instrument travelled over the central southern Weddell Sea continental shelf. The instrument yielded 750 CTD profiles, 250 of them to the sea floor. The data show a full depth flow of water onto the shelf via a sill at the shelf break (74°S 44°W). The warmth from the core of the flow was able to maintain the surface mixed layer above the freezing point, resulting in a band of reduced ice-production. An estimate of the on-shelf flux suggests that this flow accounts for most of the estimated 3 Sv of water draining from the southern Weddell Sea continental shelf.
-
Responses by marine top predators to environmental variability have previously been almost impossible to observe directly. By using animal-mounted instruments simultaneously recording movements, diving behavior, and in situ oceanographic properties, we studied the behavioral and physiological responses of southern elephant seals to spatial environmental variability throughout their circumpolar range. Improved body condition of seals in the Atlantic sector was associated with Circumpolar Deep Water upwelling regions within the Antarctic Circumpolar Current, whereas High-Salinity Shelf Waters or temperature/salinity gradients under winter pack ice were important in the Indian and Pacific sectors. Energetic consequences of these variations could help explain recently observed population trends, showing the usefulness of this approach in examining the sensitivity of top predators to global and regional-scale climate variability.
-
Dynamic behaviour of the West Antarctic ice sheet in the Amundsen Sea Embayment during the later quaternary climatic cycles, pliocene to quaternary palaeoceanography in the Southwest Pacific, and holocene climate history of Maxwell Bay, King George Island.
-
The termination of the last ice age (Termination 1; T1) is crucial for our understanding of global climate change and for the validation of climate models. There are still a number of open questions regarding for example the exact timing and the mechanisms involved in the initiation of deglaciation and the subsequent interhemispheric pattern of the warming. Our study is based on a well-dated and high-resolution alkenone-based sea surface temperature (SST) record from the SE-Pacific off southern Chile (Ocean Drilling Project Site 1233) showing that deglacial warming at the northern margin of the Antarctic Circumpolar Current system (ACC) began shortly after 19,000 years BP (19 kyr BP). The timing is largely consistent with Antarctic ice-core records but the initial warming in the SE-Pacific is more abrupt suggesting a direct and immediate response to the slowdown of the Atlantic thermohaline circulation through the bipolar seesaw mechanism. This response requires a rapid transfer of the Atlantic signal to the SE-Pacific without involving the thermal inertia of the Southern Ocean that may contribute to the substantially more gradual deglacial temperature rise seen in Antarctic ice-cores. A very plausible mechanism for this rapid transfer is a seesaw-induced change of the coupled ocean–atmosphere system of the ACC and the southern westerly wind belt. In addition, modelling results suggest that insolation changes and the deglacial CO2 rise induced a substantial SST increase at our site location but with a gradual warming structure. The similarity of the two-step rise in our proxy SSTs and CO2 over T1 strongly demands for a forcing mechanism influencing both, temperature and CO2. As SSTs at our coring site are particularly sensitive to latitudinal shifts of the ACC/southern westerly wind belt system, we conclude that such latitudinal shifts may substantially affect the upwelling of deepwater masses in the Southern Ocean and thus the release of CO2 to the atmosphere as suggested by the conceptual model of [Toggweiler, J.R., Rusell, J.L., Carson, S.R., 2006. Midlatitude westerlies, atmospheric CO2, and climate change during ice ages. Paleoceanography 21. doi:10.1029/2005PA001154].
-
Macrobenthic soft-bottom molluscs were sampled in 30 stations located in the Bellingshausen Sea at depths ranging from 90 to 3304 m. The samples were collected using a quantitative grab box-corer during the cruises BENTART 03, from 24 January to 3 March 2003, and BENTART 06, from 2 January to 16 February 2006. Molluscs represent 1074 specimens belonging to 62 species of Polyplacophora, Gastropoda, Bivalvia and Scaphopoda. The bivalve Cyamiocardium denticulatum was the most abundant species (448 specimens). The abundance per station varied between 1 and 446 specimens. The Shannon–Wiener diversity index ranged between one specimen and 2.36, the Pielou evenness index ranged between 0.00 and 1 and species richness ranged from 1 to 14 species. Diversity showed great variations at different stations. After multivariate analysis (cluster analysis and nonmetrical multidimensional scaling) based on Bray–Curtis similarities, we were able to separate two principal clusters. The first cluster groups together species from shallower bottoms near Peter I Island and the Antarctic Peninsula, and the second cluster groups together species from deeper bottoms in the Bellingshausen Sea. The combination of environmental variables with the highest correlations with faunistic data was that of depth and coarse sand at the surface.
-
Model simulations of circulation and melting beneath Fimbulisen, Antarctica, obtained using an isopycnic coordinate ocean model, are presented. Model results compare well with available observations of currents and hydrography in the open ocean to the north of Fimbulisen and suggest that Warm Deep Water exists above the level of a sub-ice-shelf bedrock sill, the principal pathway for warm waters to enter the sub-ice-shelf cavity. The model shows a southward inflow of Warm Deep Water over this sill and into the cavity, producing a mean cavity temperature close to −1.0°C. This leads to high levels of basal melting (>10 m/a) at the grounding line of Jutulstraumen and an average melting over the ice shelf base close to 1.9 m/a. The southward inflow is a compensating flow caused by the northward outflow of fresh, cold water produced by the basal melting. Results on inflow and melting are difficult to validate since no in situ measurements yet exist in the cavity. If such high melt rates are realistic, the mass balance of Fimbulisen must be significantly negative, and the ice shelves along Dronning Maud Land must contribute about 4.4 mSv of melt water to the Weddell Sea, about 15% of the total Antarctic meltwater input to the Southern Ocean.
-
Drift and variability of sea ice in the Amundsen Sea are investigated with ice buoys deployed in March 2000 and a coupled ice-ocean model. The Bremerhaven Regional Ice Ocean Simulations (BRIOS) model results are compared with in situ ocean, atmosphere, and sea ice measurements; satellite observations; and 8?19 months of buoy drift data. We identify a zone of coastal westward drift and a band of faster eastward drift, separated by a broad transition region characterized by variable ice motions. The model represents drift events at scales approaching its resolution but is limited at smaller scales and by deficiencies in the National Centers for Environmental Prediction forcing. Two thirds of the modeled ice production in the southern Amundsen moves westward near the coast, its transport modulated by meridional wind strength, damping sea ice formation in the eastern Ross Sea. Half of the ice exported from the Ross moves eastward into the northern Amundsen Sea, a net sea ice sink that also receives more than one third of the ice generated to its south. A low rate of exchange occurs with the Bellingshausen Sea, which must have a more independent ice regime. Snow ice formation resulting from high precipitation accounts for one quarter of the ice volume in the Amundsen Sea, aiding the formation of thick ice in a region with generally divergent ice drift. Freshwater extraction by sea ice formation is roughly balanced by precipitation and ice shelf melting, but a positive trend in the surface flux is consistent with an Amundsen source for reported freshening in the Ross Sea.
-
This study explores the changes in the surface water fugacity of carbon dioxide (fCO2) and biological carbon uptake in two Southern Ocean iron fertilisation experiments with different hydrographic regimes. The Southern Ocean Iron Release Experiment (SOIREE) experiment was carried out south of the Antarctic Polar Front (APF) at 61°S, 141°E in February 1999 in a stable hydrographic setting. The EisenEx experiment was conducted in a cyclonic eddy north of the APF at 48°S, 21°E in November 2000 and was characterised by a rapid succession of low to storm-force wind speeds and dynamic hydrographic conditions. The iron additions promoted algal blooms in both studies. They alleviated algal iron limitation during the 13-day SOIREE experiment and probably during the first 12 days of EisenEx. The fCO2 in surface water decreased at a constant rate of 3.8μatmday−1 from 4 to 5 days onwards in SOIREE. The fCO2 reduction was 35μatm after 13 days. The evolution of surface water fCO2 in the iron-enriched waters (or ‘patch’) displayed a saw tooth pattern in EisenEx, in response to algal carbon uptake in calm conditions and deep mixing and horizontal dispersion during storms. The maximum fCO2 reduction was 18–20μatm after 12 and 21 days with lower values in between. The iron-enriched waters in EisenEx absorbed four times more atmospheric CO2 than in SOIREE between 5 and 12 days, as a result of stronger winds. The total biological uptake of inorganic carbon across the patch was 1389ton C (±10%) in SOIREE and 1433ton C (±27%) in EisenEx after 12 days (1ton=106g). This similarity probably reflects the comparable size of the iron additions, as well as algal growth at a similar near-maximum growth rate in these regions. The findings imply that the different mixing regimes had less effect on the overall biological carbon uptake across the iron-enriched waters than suggested by the evolution of fCO2 in surface water.
-
Polar shores probably represent the most dynamic and extremely disturbed environments on the globe. Nevertheless intense battles amongst sessile organisms for space are commonplace on hard substrata, mainly between fast-growing pioneer species. In this study we examined spatial interactions in encrusting species at 3 sites within each of 2 high Arctic localities, Horsundfjord (77°N) and Kongsfjord (79°N) in Spitsbergen, and 2 Antarctic localities, Signy Island (60°S) and Adelaide Island (68°S). In both polar regions 1 to 11% of encrusting fauna were involved in intraspecific interactions. Intraspecific competition was common; it usually involved just 1 or 2 pioneer species, mainly ended in tied outcomes, and most variability was at a local scale. The proportion of intraspecific encounters varied considerably at local (km) scales (19 to 99% intraspecific at different sites), reflecting an extremely patchy environment due to ice scour. Most intraspecific encounters resulted in ties (stand-offs) and again most variability was at a local scale. Many intraspecific encounters were constructive, forming large (>1 m3) foliaceous colonies (termed bioconstructions) whose 3D structures can harbour rich biotas. In other colonies intraspecific competition caused crowding and accelerated ovicell production (reproductive activity). Homosyndrome (fusion) was not observed in the Arctic and was rare in the Antarctic, where its frequency differed significantly between competitor identities. We found that the likelihood of meeting conspecifics versus other species and of tied outcomes in encounters was related to the performance of species in interspecific competition: ties were most common, and homosyndrome only occurred in poor competitors. In the context of rapid Arctic and west Antarctic warming and ice-loading of nearshore waters, we predict strongly changing patterns of intraspecific competition. Indeed we suggest that decreased patchiness of intra- versus interspecific competition and decreased levels of intraspecific competition should be strong indicators of increases in surface water ice-loading from ice-sheet collapses. KEYWORDS: Sublittoral · Benthos · Bioconstruction · Climate change · Homosyndrome
-
Conveyor belt circulation controls global climate through heat and water fluxes with atmosphere and from tropical to polar regions and vice versa. This circulation, commonly referred to as thermohaline circulation (THC), seems to have millennium time scale and nowadays-a non-glacial period-appears to be as rather stable. However, concern is raised by the buildup Of CO2 and other greenhouse gases in the atmosphere (IPCC, Third assessment report: Climate Change 2001, A contribution of working group I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK) 2001, http://www.ipcc.ch) as these may affect the THC conveyor paths. Since it is widely recognized that dense-water formation sites act as primary sources in strengthening quasi-stable THC paths (Stommel H., Tellus, 13 (1961) 224), in order to simulate properly the consequences of such scenarios a better understanding of these oceanic processes is needed. To successfully model these processes, air-sea-ice-integrated modelling approaches are often required. Here we focus on two polar regions using the Regional Ocean Modeling System (ROMS). In the first region investigated, the North Atlantic-Arctic, where open-ocean deep convection and open-sea ice formation and dispersion under the intense air-sea interactions are the major engines, we use a new version of the coupled hydrodynamic-ice ROMS model. The second area belongs to the Antarctica region inside the Southern Ocean, where brine rejections during ice formation inside shelf seas origin dense water that, flowing along the continental slope, overflow becoming eventually abyssal waters. Results show how nowadays integrated-modelling tasks have become more and more feasible and effective; numerical simulations dealing with large computational domains or challenging different climate scenarios can be run on multi-processors platforms and on systems like LINUX clusters, made of the same hardware as PCs, and codes have been accordingly modified. This relevant numerical help coming from the computer science can now allow scientists to devote larger attention in the efforts of understanding the deep mechanisms of such complex processes.
-
The reconstruction of the paleoclimatic and paleoceanographic development of the late Quaternary Southern Ocean and adjacent continental areas in high temporal and spatial resolution is a main goal of our longterm study. During ANT-XX/2 the sedimentary budget of biogenic and terrigenous components and their variability was investigated in cooperation with geochemical projects. Main objectives were the relationships between production of biogenic components and input of terrigenous components and involved nutrients.
-
The Weddell Deep Water (WDW) warmed substantially along the Greenwich meridian following the Weddell Polynya of the 1970s. Areas affected by the polynya contained ∼14GJ/m2 more heat in 2001 than in 1977. This warming would require a flux of ∼390W/m2 if it were to take place over a year. Large variations in heat content of the WDW are found between the Antarctic coast and Maud Rise (64°S). The small variation found north of Maud Rise is opposite in phase to that to the south, and the warming was close to monotonic south of 68°S. The mean warming of WDW along the section is ∼0.032°C per decade, comparable to the warming of the Antarctic Circumpolar Current. The mean warming compares with a surface heat flux of 4W/m2 over the 25 year period, an order of magnitude higher than the warming of the global ocean. As variation in mean salinity of the WDW follows the warming/cooling events, variation in inflow probably explains a cooling event between 1984 and 1989, and a warming event between 1989 and 1992. Cooling during the late 1990s is probably related to the reappearance of a polynya like feature in some winter months as an area 100km in diameter close to Maud Rise with 10–20% lower sea ice concentrations than the surrounding ocean.
Explore
Topic
- oseanografi
- AABW (12)
- alger (9)
- Amundsenhavet (4)
- Antarktis (38)
- antropogenisk CO2 (1)
- Argentina (1)
- arkebakterier (1)
- atmosfæren (4)
- bakterier (3)
- batymetri (10)
- Belgica ekspedisjon (1)
- bentiske organismer (1)
- biodiversitet (2)
- biofilm (1)
- biofysikk (1)
- biogeografi (1)
- biogeokjemi (14)
- biografier (1)
- biokjemi (5)
- biologging (1)
- biologi (4)
- biomarkører (1)
- biomasse (12)
- bioressurser (1)
- biosfære (1)
- biotelemetri (1)
- bløtdyr (1)
- botanikk (1)
- Bouvetøya (14)
- Brategg ekspedisjon (4)
- brehylle (14)
- bryozoa (1)
- bunnvann (8)
- bunnvannet (5)
- bunnvannsformasjoner (2)
- copepoder (1)
- dagbøker (1)
- Deceptionøya (1)
- Den lille istid (1)
- Den norske antarktisekspedisjonen 1956-60 (1)
- diatomeer (7)
- drivis (3)
- Dronning Maud Land (16)
- ekkolodd (3)
- ekspedisjoner (38)
- fiskefartøy (1)
- fisker (1)
- fiskeri (1)
- fiskerier (1)
- fjernanalyse (1)
- fjernmåling (4)
- forskning (31)
- forskningsfartøy (1)
- forskningsstasjoner (1)
- fotogrammetri (1)
- fotosyntese (2)
- Fram (skip) (1)
- fugler (1)
- fysisk oseanografi (3)
- fytoplankton (31)
- geodesi (3)
- geofysikk (39)
- geografi (6)
- geokjemi (3)
- geologi (15)
- geomorfologi (1)
- georadar (1)
- geovitenskap (1)
- glasiologi (31)
- global oppvarming (2)
- gonader (1)
- havbølger (1)
- havbruksnæring (1)
- havbunnen (7)
- havet (1)
- havforsuring (2)
- havis (43)
- havis alger (1)
- havnivå (1)
- havnivåstigning (4)
- havoppvarming (1)
- havsirkulasjon (1)
- havstrømmer (35)
- histologi (1)
- Hjalmar Riiser (3)
- holocene (1)
- hval (1)
- hvaler (3)
- hvalfangere (3)
- hvalfangst (6)
- hydroakustikk (1)
- hydrografi (29)
- hydrologi (3)
- iceberg calving (1)
- innlandsis (10)
- is (1)
- isberg (8)
- isbre (1)
- isbreer (2)
- isbrem (20)
- isdrift (3)
- isfjell (5)
- isfront (4)
- iskjerner (1)
- ismeltvann (1)
- issfjell (2)
- isshelf (45)
- jordbruk (1)
- kalv (1)
- kalving (3)
- karbon syklus (7)
- karbondioksid (10)
- karboneksport (1)
- kartlegging (2)
- kjemi (3)
- kjemiske analyser (1)
- klima (4)
- klimaendringer (24)
- klimaforskning (1)
- klimamodeller (11)
- klimatologi (23)
- knølhvaler (1)
- konferanse (1)
- kongress (3)
- kontinentalmargin (4)
- kontinentalsokkel (10)
- kontinentalsokler (2)
- koraller (1)
- krill (16)
- landfast havis (1)
- landfast sjøis (1)
- langmuirsirkulasjon (1)
- Lars Christensen (3)
- Larsen (3)
- logistikk (2)
- M/V Polarsirkel (1)
- magnetostratigrafi (1)
- målinger (2)
- marin biologi (64)
- marin geofysikk (5)
- marin geologi (8)
- marin kjemi (5)
- marin zoologi (5)
- marinbiologi (5)
- marine økosystemer (5)
- marine planter (1)
- matproduksjon (1)
- Maudheimekspedisjonen (1)
- metabolisme (1)
- metanutslipp (1)
- meteorologi (25)
- migrasjon (1)
- mikroorganismer (1)
- mikropaleontologi (2)
- miljø (1)
- miljøendringer (3)
- miljøsatellitter (1)
- mollusker (1)
- morfologi (1)
- NARE 1976/77 (2)
- NARE 1978/79 (1)
- NARE 1989/90 (1)
- NARE 1991/92 (2)
- NARE 1992/93 (3)
- NARE 1996/97 (2)
- NARE 1997/98 (2)
- NARE 2000/01 (4)
- NARE ekspedisjoner (3)
- NARP 1992/93 (1)
- naturvitenskap (2)
- NBSAE 1949-52 (1)
- Norsk-britisk-svenske antarktisekspedisjon (1)
- Norvegia ekspedisjonen (2)
- Norvegia ekspedisjoner (3)
- NSBX 1949-52 (1)
- numerisk modellering (1)
- næring (1)
- observasjoner (6)
- økofysiologi (1)
- økologi (2)
- økosystem (2)
- økosystemer (10)
- oppdagelsesreiser (5)
- oppvarming (1)
- ornitologi (5)
- overflatevann (2)
- paleoklimatologi (7)
- paleomagnetisme (1)
- paleontologi (2)
- paleoseanografi (2)
- pelsseler (1)
- Peter I. Øy (5)
- phytoplankton (3)
- pingviner (1)
- plankton (16)
- planteplankton (3)
- polarområdene (11)
- polynja (5)
- protoktister (1)
- pyknoklin (1)
- radiumisotoper (1)
- reproduksjon (1)
- Roald Amundsen (2)
- Rosshavet (7)
- S.S.Vikingen 1929-30 (2)
- saltinnhold (1)
- satellite altimetri (1)
- satellite bilder (2)
- satellitt (1)
- Scotiahavet (3)
- sedimenter (2)
- sedimentologi (2)
- seismisk stratigrafi (1)
- seismologi (3)
- seler (5)
- sjøelefanter (2)
- sjøfugler (1)
- sjøis (30)
- sjøpattedyr (3)
- sjøvann (13)
- sjøvirvler (1)
- smeltevann (2)
- smelting (4)
- snø (1)
- snøsmelting (1)
- Sør-Orknøyene (2)
- Sør-Shetlandsøyene (2)
- Sørishavet (236)
- Sørishavsstrømmen (7)
- sørlig oscillasjon (1)
- stabile isotoper (2)
- stratigrafi (1)
- strømmer (2)
- strømmodeller (1)
- superkjøling (1)
- Sydpolen (3)
- Sydpolsekspedisjonen (3)
- symposium (2)
- tektonikk (1)
- telemetri (1)
- temperatur (2)
- Thorshavn ekspedisjon (2)
- tidevann (4)
- tidevannsstrømmer (1)
- topografi (2)
- understrømmer (1)
- vannmasser (23)
- vannvirvler (6)
- Vestantarktis (1)
- virvelstrømmer (1)
- vitenskap (1)
- Weddellhavet (91)
- zoologi (4)
- zooplankton (10)
Resource type
- Book (21)
- Book Section (28)
- Document (6)
- Journal Article (219)
- Report (1)
- Thesis (4)
Publication year
-
Between 1900 and 1999
(108)
- Between 1920 and 1929 (2)
- Between 1930 and 1939 (15)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (6)
- Between 1960 and 1969 (8)
- Between 1970 and 1979 (21)
- Between 1980 and 1989 (20)
- Between 1990 and 1999 (33)
-
Between 2000 and 2025
(171)
- Between 2000 and 2009 (55)
- Between 2010 and 2019 (65)
- Between 2020 and 2025 (51)