Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 241 resources

  • This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major differences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice‐crystal matrix or inhabiting the ice–water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many differences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice‐associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are nearly absent from the high Arctic. Life history strategies are variable, although reproductive cycles and life spans are generally longer than those for temperate congeners. Species at both poles tend to be opportunistic feeders and periods of diapause or other reductions in metabolic expenditure are not uncommon.

  • Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.

  • Entanglements of Antarctic fur seals Arctocephalus gazella were recorded during four summers from 1996 to 2002 at the subantarctic island, Bouvetøya. Rates of entanglement varied between 0.024% and 0.059%. These rates are low for a pinniped population and might be because of the geographic isolation of the haulout site. An apparent decrease in the levels of entanglement over the course of the study was likely due, at least in part, to the removal of entanglements by observers. At least two-thirds of entangling materials were generated by fishery sources. Since there is no known local source of anthropogenic marine pollution, seals become entangled either in waters distant from the island, or when materials drift into local waters. Significantly more subadults were found entangled than expected from the postulated population age class distribution.

  • Diverse microbial communities survive within the sea ice matrix and are integral to the energy base of the Southern Ocean. Here we describe initial findings of a four season survey (between 1999–2004) of community structure and biomass of microalgae within the sea ice and in the underlying water column at Cape Evans and Cape Hallett, in the Ross Sea, Antarctica as part of the Latitudinal Gradient Project. At Cape Evans, bottom-ice chlorophyll a levels ranged from 4.4 to 173 mg Chl a m−2. Dominant species were Nitzschia stellata, N. lecointei, and Entomoneis kjellmanii, while the proportion of Berkeleya adeliensis increased steadily during spring. Despite being obtained later in the season, the Cape Hallett data show considerably lower standing stocks of chlorophyll ranging from 0.11 to 36.8 mg Chl a m−2. This difference was attributed to a strong current, which may have ablated much of the bottom ice biomass and provided biomass to the water below. This loss of algae from the bottom of the ice may explain why the ice community contributed only 2% of the standing stock in the total water column. Dominant species at Cape Hallett were Nitzschia stellata, Fragilariopsis curta and Cylindrotheca closterium. The low biomass at Cape Hallett and the prevalence of smaller-celled diatoms in the bottom ice community indicate that the ice here is more typical of pack ice than fast ice. Further data will allow us to quantify and model the extent to which ice-driven dynamics control the structure and function of the sea ice ecosystem and to assess its resilience to changing sea ice conditions.

  • Polar shores probably represent the most dynamic and extremely disturbed environments on the globe. Nevertheless intense battles amongst sessile organisms for space are commonplace on hard substrata, mainly between fast-growing pioneer species. In this study we examined spatial interactions in encrusting species at 3 sites within each of 2 high Arctic localities, Horsundfjord (77°N) and Kongsfjord (79°N) in Spitsbergen, and 2 Antarctic localities, Signy Island (60°S) and Adelaide Island (68°S). In both polar regions 1 to 11% of encrusting fauna were involved in intraspecific interactions. Intraspecific competition was common; it usually involved just 1 or 2 pioneer species, mainly ended in tied outcomes, and most variability was at a local scale. The proportion of intraspecific encounters varied considerably at local (km) scales (19 to 99% intraspecific at different sites), reflecting an extremely patchy environment due to ice scour. Most intraspecific encounters resulted in ties (stand-offs) and again most variability was at a local scale. Many intraspecific encounters were constructive, forming large (>1 m3) foliaceous colonies (termed bioconstructions) whose 3D structures can harbour rich biotas. In other colonies intraspecific competition caused crowding and accelerated ovicell production (reproductive activity). Homosyndrome (fusion) was not observed in the Arctic and was rare in the Antarctic, where its frequency differed significantly between competitor identities. We found that the likelihood of meeting conspecifics versus other species and of tied outcomes in encounters was related to the performance of species in interspecific competition: ties were most common, and homosyndrome only occurred in poor competitors. In the context of rapid Arctic and west Antarctic warming and ice-loading of nearshore waters, we predict strongly changing patterns of intraspecific competition. Indeed we suggest that decreased patchiness of intra- versus interspecific competition and decreased levels of intraspecific competition should be strong indicators of increases in surface water ice-loading from ice-sheet collapses. KEYWORDS: Sublittoral · Benthos · Bioconstruction · Climate change · Homosyndrome

  • We examined deep-sea epibenthic sledge isopod data from the Atlantic sector of the Southern Ocean (SO) (depth range=742–5,191 m). Samples were taken during the expeditions EASIZ II (ANT XV-3) in 1998 and ANDEEP I and II (ANT XIX3/4) in 2002. A total of 471 isopod species were recorded from 28 sites. The species richness of the epibenthic sledge samples was highly variable (6–82 species). Species richness was highest at site 131-3 in 3,053 m depth in the north-eastern Weddell Sea. The highest numbers of species were sampled in the middle depth range and lower species richness was found in the shallower and deeper parts of the study area. Depth is suggested to explain isopod species richness better than both latitude and longitude. Between 58°S and 65°S, the number of species ranged from 9 to 82 (mean=35.9). Further south in the Weddell Sea, between 73°S and 74°S, species richness was lower and the number of species ranged from 6 to 35 (mean=19.2). With regard to longitude, the highest species richness (up to 82 species) was found between 50°W and 60°W in the area of the South Shetland Islands and around the Antarctic Peninsula, while numbers did not exceed 50 species in the eastern Weddell Sea. The haul length, ranging from 807 to 6,464 m, was positively correlated with depth; however, there was no linear relationship between haul length and species richness. We therefore suggest that depth was the most important factor explaining isopod species richness. However, only 28 sites were visited and the statistical power is thus limited. Sampling in the deep sea is expensive and time consuming and as yet this is the best isopod data set available from the Atlantic sector of the SO. Future expeditions are therefore important to better explain the current patterns of benthic diversity in Antarctica.

  • Inevitably, aerobic life leads to the formation of deleterious reactive oxygen species (ROS) which participate in biomolecule oxidation, hence augmenting biomolecule turnover. Organisms have adapted to counteract the noxious effects of ROS by developing a battery of antioxidant defences (AOX) which comprise enzymes and low-molecular weight scavengers. Past studies have reported elevated AOX levels in polar pectinid bivalves compared with temperate congeners. This fi nding is controversial as mitochondrial ROS generation is low in polar versus temperate species, and, to date, there is no generally accepted explanation of the causes of increased basal AOX levels in polar waters. We suggest that the low food availability in those ecosystems may result in polar marine ectotherms diverting some energy into the maintenance of high AOX. We tested this hypothesis by comparing the total oxyradical scavenging capacity (peroxyl, hydroxyl and peroxynitrite) of three clam species: Laternula elliptica (Antarctic), Mya truncata (Arctic) and Mya arenaria (temperate). The data confi rmed that polar bivalves are characterized by higher AOX. Herein, we propose that high AOX is required in environments characterized by low food availability as AOX effi ciently protects biomolecules, notably the RNA expressed at high levels by cold-water ectotherms. Also, high AOX may explain the relatively long lifespan of most polar ectotherms.

  • Antarctic fur seal Arctocephalus gazella pup production at Nyrøysa, Bouvetøya was estimated to be approximately 15,000 per annum during each of four summers from 1996 to 2002, indicating a total population of about 66,000. While the Bouvetøya population is the second largest for this species, pup production at this site still accounts for only 2.4% of the global total. This population experienced a mean annual rate of increase of 30.6% for the period 1989–1996, perhaps due, in part, to significant immigration, but has been stable since 1996. Historical accounts of significant numbers of animals being present towards the end of the period of sealing (C.1800–1930), indicate that the geographic isolation and inaccessibility of this site may have resulted in the Bouvetøya population being one of three populations that survived a series of periods of extreme exploitation of this species.

  • Telonema is a widely distributed group of phagotrophic flagellates with two known members. In this study, the structural identity and molecular phylogeny of Telonema antarcticum was investigated and a valid description is proposed. Molecular phylogeny was studied using small-subunit rRNA (SSU rRNA) gene sequences. The pear-shaped cell had two subequal flagella that emerged laterally on the truncated antapical tail. One flagellum had tripartite hairs. The cell was naked, but had subsurface vesicles containing angular paracrystalline bodies of an unknown nature. A unique complex cytoskeletal structure, the subcortical lamina, was found to be an important functional and taxonomic feature of the genus. Telonema has an antero-ventral depression where food particles are ingested and then transferred to a conspicuous anterior food vacuole. The molecular phylogeny inferred from the SSU rRNA gene sequence suggested that Telonema represents an isolated and deep branch among the tubulocristate protists.

  • A solitary skin lesion was found on the neck of a Weddell seal (Leptonychotes weddellii), chemically immobilized in Queen Maud Land (70°09′S, 05°22′E) Antarctica 2001. The lesion was elevated and 3cm in diameter, consisting of partly fresh and partly necrotic tissue, and proliferative papilloma-like structures were seen. Electron microscopy on a biopsy from the lesion revealed typical parapoxvirus particles. Polymerase chain reaction (PCR; B2L gene) generated amplicons of approximately 594 base pairs, comparable to Orf-virus, the prototype parapoxvirus. A comparison of these B2L PCR amplicon DNA sequences with corresponding sequences from other parapoxviruses, showed that the Weddell seal virus resembled isolates from grey seal (Halichoerus grypus) and harbour seal (Phoca vitulina) more than parapoxvirus from red deer (Cervus elaphus), sheep, cattle and Japanese serows (Capricornis crispus). It is thus concluded that the Weddell seal parapoxvirus belong to the tentative seal parapoxvirus species. Since parapox and orthopoxviruses may cause similar clinical diseases, we suggest that the term sealpox should be restricted to the clinical disease, whereas seal parapoxvirus should be used when caused by a parapoxvirus, rather than the general term “sealpox virus”. This is the first verified case of parapoxvirus infection in a Weddell seal, and also the first report of any such infections in the Antarctic.

  • The fugacity of carbon dioxide (fCO2) of the surface waters of the Weddell Sea along the prime meridian has been described for the austral autumn in 1996 and 1998. For individual years, fCO2 has a strong linear relationship with sea surface temperature, although the relationships cannot be reconciled to provide an interannually consistent algorithm for remotely sensed assessment of fCO2. However, from the assumption that Weddell Sea surface water has a single end member (upwelled Warm Deep Water) we have determined the relative contributions of heating, ice-melt, and biological activity on fCO2. A breakdown of the controls shows that the measured annual fCO2 distributions can be recreated for both transects by adjusting solely for thermodynamic forcing, and model adjustments for salinity are small except in regions of significant upwelling during 1998. The incorporation of nitrate utilisation into the model results in a general and significant underestimation of fCO2. This runs contrary to the earlier findings of Sabine and Key (Mar. Chem. 60 (1998) 95) in the Southern Ocean although it is consistent with models in the area (Louanchi et al., Deep-Sea Res. I 48 (2001) 1581). A major caveat to these findings is the significant departure of the thermodynamic model and a tightening of the nitrate-adjusted model in 1998 in areas with deeper mixing in the southern Weddell Sea. We propose that there are two reasons for the discrepancies in our model: the source waters are not as homogenous as the model assumes; and there are geographical and seasonal variations of CO2 exchange with the atmosphere and the input of inorganic carbon and nitrate from below the mixed layer resulting in imbalances in the mixed layer concentration ratios.

  • Fifty-seven Antarctic marine bacteria were examined for their ability to degrade commercial diesel oil as the sole organic substrate at both 4 °C and 20 °C. Based on the preliminary screening, two isolates (B11 and B15) with high capacity to degrade diesel oil were selected and their biodegradation effi ciency was quantifi ed by gas chromatographic analysis. As expected for psychrotrophs, diesel oil biodegradation was slower at 4 °C than at 20 °C. The two strains also mineralized the C28 n-paraffi n octacosane at 20 °C and polychlorinated biphenyls (PCBs) at 4 °C and 20 °C.

  • Two strains of psychrotolerant Antarctic marine bacteria were isolated and characterized using biochemical and molecular techniques. Sequencing of 16S rRNA gene showed that UVvi strain belongs to the genus Arthrobacter whereas UVps strain is related to the Flexibacter-Cytophaga-Bacteroides (FCB) group. Response of the strains to solar radiation was studied during the summer of 1999 in Potter Cove, near Jubany station (South Shetland Island, Antarctica). The effect of photosynthetically available radiation (PAR, 400-700 nm), ultraviolet-A (UV-A, 320-400 nm) and ultraviolet-B radiation (UV-B, 280-320 nm) on cell viability was studied using mixed cultures in quartz bottles covered with interferential filters and exposed to solar radiation. In all experiments, four treatments were used: dark (with light screened out), PAR (with UV radiation screened out), PAR+UV-A (UV-B screened out) and PAR+UV-A+UV-B. Under the assayed conditions, PAR+UV-A and PAR+UV-A+UV-B radiation showed similar negative effects on the viability of the studied strains. However, at the end of the exposure time, mortality values in PAR+UV-A+UV-B treatments were higher than those observed under PAR+UV-A treatments. In both PAR+UV-A and PAR+UV-A+UV-B treatments we observed high levels of hydrogen peroxide compared with the dark control. The Arthrobacter UVvi strain showed significant recovery in dark conditions after exposure to the PAR+UV-A but not after the PAR+UV-A+UV-B treatment. This strain proved to be more resistant to UV radiation than the FCB group-related UVps strain. The results showed that UV radiation has a deleterious effect on these Antarctic marine bacteria and also revealed that the analysed components of the Antarctic bacterioplankton may have different responses when they are exposed to the same irradiance conditions.

  • Iron(III) photoreduction and the responses of phytoplankton under ultraviolet (UV) and photosynthetically available radiation (PAR) were investigated with the presence of hydroxycarboxylic acid (glucaric acid (GA), a model compound for organic acids excreted by phytoplankton). The incubation experiments were carried out on board using seawater samples collected in the location of the winter ice edge (WIE) and the spring ice edge (SIE) of the Southern Ocean. In this paper, we focus on the results of experiment in WIE. Throughout the experiments, dissolved Fe(II), major nutrients and in vivo fluorescence were monitored regularly. In addition, Chl-a, POC/PON, cell densities of phytoplankton and bacteria, bacterial production, organic peroxide, hydrogen peroxide and total CO2 were measured. The results from the WIE show that iron enrichment had a substantial effect on phytoplankton growth rate. Fe(III) addition in the presence of GA (FeGA) gave higher Fe(II) concentration and higher growth rate of phytoplankton than those in controls. Our results suggest that hydroxycarboxylic acid had a significant chemical and biological impact. The presence of GA influenced iron photochemistry and iron availability to phytoplankton. Phytoplankton growth responses to iron enrichments in incubations under UV and PAR were completely dissimilar. It seems that FeGA addition prominently changes the harmful effect of UV on the phytoplankton population. This study provides preliminary information on how the photoreduction of iron(III) and the phytoplankton growth are affected by iron enrichment in the presence of hydroxycarboxylic acid.

  • The importance of the diatom Fragilariopsis cylindrus (Grunow) Krieger in Helmcke & Krieger in the Arctic and Antarctic is well known. It is used as an indicator of sea ice when the paleoenvironment is being described. It is often among the dominant taxa in different sea ice communities, sometimes making an important contribution to a subsequent phytoplankton growth when released by ice melt. However, it may also dominate phytoplankton blooms in areas never experiencing sea ice. The use of F. cylindrus as an indicator for reconstruction of palaeoceanographic conditions is assessed from literature records. Its potential as an indicator species for sea ice appears to vary from region to region, but it is a good indicator of cold water.

  • The role of iron and light in controlling photosynthate production and allocation in phytoplankton populations of the Atlantic sector of the Southern Ocean was investigated in April–May 1999. The 14C incorporation into five biochemical pools (glucan, amino acids, proteins, lipids and polysaccharides) was measured during iron/light perturbation experiments. The diurnal Chl a-specific rates of carbon incorporation into these pools did not change in response to iron addition, yet were decreased at 20 μmol photons m−2 s−1, an irradiance comparable with the one at 20–45 m in situ depth. This suggests that the low phytoplankton biomass encountered (0.1–0.6 μg Chl a L−1) was mainly caused by light limitation in the deep wind mixed layer (>40 m). Regional differences in Chl a-specific carbon incorporation rates were not found in spite of differences in phytoplankton species composition: at the Antarctic Polar Front, biomass was dominated by a diatom population of Fragilariopsis kerguelensis, whereas smaller cells, including chrysophytes, were relatively more abundant in the Antarctic Circumpolar Current beyond the influence of frontal systems. Because mixing was often in excess of 100 m in the latter region, diatom cells may have been unable to fulfil their characteristically high Fe demand at low average light conditions, and thus became co-limited by both resources. Using a model that describes the 14C incorporation, the consistency was shown between the dynamics in the glucan pool in the field experiments and in laboratory experiments with an Antarctic diatom, Chaetoceros brevis. The glucan respiration rate was almost twice as high during the dark phase as during the light phase, which is consistent with the role of glucan as a reserve supplying energy and carbon skeletons for continued protein synthesis during the night.

  • A new stegocephalid (Amphipoda) species, Metandania tordi n.sp, is described, belonging to the subfamily Andaniexinae Berge & Vader 2001. The new species is the first record of the genus in the southern hemisphere. In addition, a morphological trait, previously not figured nor described within this family, is presented: a process proximally on the inner anterior surface of the fourth coxa. This locking-process is interpreted, and named accordingly, to enhance a relative stabilization of the third and fourth coxae. A brief comparison of the morphology of the fourth coxa between all five stegocephalid subfamilies is presented.

  • The spleens of several seals from both the Arctic and the Antarctic were isolated and weighed when contracted. Spleens of the crabeater, leopard, and Weddell seals formed 0.23%, 0.39%, and 0.86% of the seals' body weights; those of the hooded and harp seals formed 0.56% and 0.35% of the seals' body weights. In these 5 phocids, a contracted spleen relates to the seal's body weight according to the equation (in which weights are in kilograms; n=26; r2=0.65): contracted spleen=0.006 (body weight)-0.11. Further, using the criterion reported in the literature that contracted spleens of hooded seal and harp seals weigh 80% less than when dilated, the sizes of dilated spleens were estimated for the 5 phocids of the study, plus that of the southern elephant seal. Dilated spleens ranged from 1 to 4% of the seal's body weight, which is in agreement with determinations of dilated spleens reported in the literature (harbor, 0.8–3.0%; harp, 1.5%; hooded, 2.2–4.0%). The general correlation among dilated spleens and the 6 phocids' body weights is: dilated spleen=0.026 (body weight)-0.39(where weights are in kilograms; n=31; r2=0.70). The size of the spleen (either contracted or dilated) from the different species of seals in this study appeared to be correlated with the diving capacity of the phocids, as given in the literature. The phocids with greater diving capacities are the ones with the larger spleens.

Last update from database: 3/1/25, 3:17 AM (UTC)

Explore

Topic

Resource type

Publication year

Online resource