Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 249 resources

  • The understanding of the role of the pteropods Limacina helicina in the ecosystem has become of greater interest as the debate on ocean acidification and its consequences for calcifying organisms has increased. Four incubation experiments were carried out in January and February 2006 in Terra Nova Bay Polynya (Ross Sea) to identify the faecal pellets (FPs) produced by L. helicina. Mean FP production rates were 6.1 ± 1.3 and 10.9 ± 2.1 pellets day−1 individual−1 in January and February, respectively. FPs produced by L. helicina had an oval shape with a more lengthened side. The identification of L. helicina faeces allowed us to quantify the amounts of L. helicina FPs in the material collected by sediment traps deployed in the same area from 1998 to 2001. We found that L. helicina FPs flux ranged from 71 × 103 FP m−2 year−1 to 362 × 103 FP m−2 year−1 and reach maximum values in March–April every year. The FPs flux of this organism contributed 19% of the particle organic carbon flux. The carbon pump may be modified if the L. helicina population declines as a consequence of the predicted acidification in polar and subpolar waters.

  • The venom of Antarctic octopus remains completely unstudied. Here, a preliminary investigation was conducted into the properties of posterior salivary gland (PSG) extracts from four Antarctica eledonine (Incirrata; Octopodidae) species (Adelieledone polymorpha, Megaleledone setebos, Pareledone aequipapillae, and Pareledone turqueti) collected from the coast off George V’s Land, Antarctica. Specimens were assayed for alkaline phosphatase (ALP), acetylcholinesterase (AChE), proteolytic, phospholipase A2 (PLA2), and haemolytic activities. For comparison, stomach tissue from Cirroctopus sp. (Cirrata; Cirroctopodidae) was also assayed for ALP, AChE, proteolytic and haemolytic activities. Dietary and morphological data were collected from the literature to explore the ecological importance of venom, taking an adaptive evolutionary approach. Of the incirrate species, three showed activities in all assays, while P. turqueti did not exhibit any haemolytic activity. There was evidence for cold-adaptation of ALP in all incirrates, while proteolytic activity in all except P. turqueti. Cirroctopus sp. stomach tissue extract showed ALP, AChE and some proteolytic activity. It was concluded that the AChE activity seen in the PSG extracts was possibly due to a release of household proteins, and not one of the secreted salivary toxins. Although venom undoubtedly plays an important part in prey capture and processing by Antarctica eledonines, no obvious adaptations to differences in diet or morphology were apparent from the enzymatic and haemolytic assays. However, several morphological features including enlarged PSG, small buccal mass, and small beak suggest such adaptations are present. Future studies should be conducted on several levels: Venomic, providing more detailed information on the venom compositions as well as the venom components themselves; ecological, for example application of serological or genetic methods in identifying stomach contents; and behavioural, including observations on capture of different types of prey.

  • East Antarctic octopods were identified by sequencing mtCOI and using four analytical approaches: Neighbor-joining by Kimura-2-Parameter-based distances, character-based, BLAST, and Bayesian Inference of Phylogeny. Although the distance-based analytical approaches identified a high proportion of the sequences (99.5% to genus and 88.1% to species level), these results are undermined by the absence of a clear gap between intra-and interspecific variation. The character-based approach gave highly conflicting results compared to the distance-based methods and failed to identify apomorphic characters for many of the species. While a DNA independent approach is necessary for validation of the method comparisons, crude morphological observations give early support to the distance-based results and indicate extensive range expansions of several species compared to previous studies. Furthermore, the use of distance-based phylogenetic methods nevertheless group specimens into plausible species clades that are highly useful in non-taxonomical or non-systematic studies. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  • Wiebe, P. H., Chu, D., Kaartvedt, S., Hundt, A., Melle, W., Ona, E., and Batta-Lona, P. 2010. The acoustic properties of Salpa thompsoni. – ICES Journal of Marine Science, 67: 583–593.Aggregations of the salp Salpa thompsoni were encountered during the Antarctic krill and ecosystem-studies cruise on the RV “G.O. Sars” from 19 February to 27 March 2008. The salp's in situ target strength (TS), size, number of individuals in aggregate chains, and chain angle of orientation were determined. Shipboard measurements were made of Salpa thompsoni's material properties. Individual aggregates were mostly 45.5–60.6 mm in mean length; relatively rare solitaries were ∼100 mm. Chains ranged from 3 to at least 121 individuals, and in surface waters (<20 m), they showed no preferred angle of orientation. Sound-speed contrast (h) ranged from 1.0060 to 1.0201 and density contrast (g) estimates between 1.0000 and 1.0039. The in situ TS distributions peaked between −75 and −76 dB at 38 kHz, with a secondary peak at approximately −65 dB. TS ranged between −85 and −65 dB at 120 and 200 kHz and peaked around −74 dB. The measured in situ TS of salps reasonably matched the theoretical scattering-model predictions based on multi-individual chains. The backscattering from aggregate salps gives rise to TS values that can be similar to krill and other zooplankton with higher density and sound-speed contrasts.

  • Antarctic bacteria producing extracellular lipolytic enzymes with activity at low temperature were isolated, and the most promising strain, named G, was identified as a Psychrobacter species based on 16S rDNA sequence alignment. The genomic DNA of this bacterium was used to construct its plasmid genomic library into pUC118 plasmid vectors, and to screen the cold-active lipolytic enzyme genes. Two genes encoding for cold-active lipolytic enzymes, Lip-1452 (with an open reading frame of 1452 bp in length) and Lip-948 (with an open reading frame of 948 bp in length), were screened. The primary structure of the two lipases deduced from the nucleotide sequence showed a consensus pentapeptide containing the active serine (Lip-1452, GDSAG, and Lip-948, GNSMG) and a conserved His-Gly dipeptide in the N-terminal part of the enzyme. Protein sequence alignment and conserved regions analysis indicated that the two lipases probably belonged to family IV and family V of the bacterial lipolytic enzymes, respectively. The upstream and downstream sequences of the two lipolytic lipases were also obtained. The two lipase genes were cloned into the expression vector pCold III and integrated into Escherichia coli BL21 (DE3). The functional expression of both lipase genes by E. coli BL21 (DE3) cells was observed as the formation of clear haloes around colonies on a 1% (vol/vol) tributyrin plate upon induction with isopropyl-b-Dthiogalactopyranoside at 5°C. A lipase activity assay showed that the specific activity of the pCold III+Lip-948 expression system was up to 3.7 U ml-1, whereas that of pCold III+Lip-1452 was very low.

  • We present the first data on attendance patterns, at-sea movements and diving behaviour of Antarctic fur seals breeding at Bouvetøya (Bouvet Island), Southern Ocean. While other colonies have been extensively studied, this remote and second largest global population remains relatively unknown. Time depth recorders and satellite relay data loggers were deployed on breeding females during the 2000–2001 and 2001–2002 summers. Attendance and foraging patterns were similar to those observed at colonies in the Scotia Sea region where Antarctic krill is the predominant prey. Early to mid-lactation trips ranged within ~100 km of the island, usually towards the west. The dominant direction shifted later in the season and the range also increased markedly to a peak between early February and early March. Solar elevation influenced arrivals and departures from the island, with most departures occurring around sunset. Diurnal variations in diving behaviour were consistent with the vertical migration of krill. Diving frequency was higher at night and diving effort peaked around morning twilight. Afternoon deep diving was common, suggesting that females might target dense daytime krill aggregations between the photic zone and the thermocline. Trip durations increased throughout early to mid-lactation, peaking in late January to early March, before again decreasing towards the end of lactation. Our results illustrate the substantial variability, both between individuals and within individuals over time, that is likely to reflect variations in prey distribution and in the growth requirements of pups. Such variations need to be taken into account when estimating habitat use and resource utilisation in marine top predators.

  • Miniature electronic data recorders and transmitters have revolutionized the way we study animals over the past decades, particularly marine animals at sea. But, very recently, animal-borne instruments have also been designed and implemented that provide in situ hydrographic data from parts of the oceans where little or no other data are currently available (even from beneath the ice in polar regions). Ocean data is delivered from animal-borne instruments via satellites in near real-time, which would enrich the Global Ocean Observing System if animal-borne instruments were deployed systematically. In the last 10 years, studies involving more than 10 countries (Australia, Brazil, Canada, France, Germany, Greenland, Norway, South Africa, UK, USA) have demonstrated how highly accurate oceanographic sensors, integrated into standard animal, biologging instruments, can provide data of equal or better quality than XBT/XCTD data. Here, we present some of the pioneering studies and demonstrate that we now have enough information for many marine species to predict where they will go – within reasonable limits. Thus, we can direct sampling effort to particularly interesting and productive regions and maximize data return. In the future, biologging could certainly play an important part in the Global Ocean Observing System, by providing complementary data to more traditional sampling technologies - especially in the high latitudes. This paper will make a core contribution to the Plenary Sessions 4A, 4B and 5A and will be relevant to 2A, 2B and 3A.

  • In recent years, the international “Southern Elephant seals as Oceanographic Samplers” (SEaOS) project has deployed miniaturized conductivity-temperature-depth satellite-relayed data loggers (CTD-SRDL) on elephant seals 1) to study their winter foraging ecology in relation to oceanographic conditions, and 2) to collect hydrographic data from polar regions, which are otherwise sparsely sampled. We summarize here the main results that have been published in both science components since 2003/2004. Instrumented southern elephant seals visit different regions within the Southern Ocean (frontal zones, continental shelf, and/or ice covered areas) and forage in a variety of different water masses (e.g. Circumpolar Deep Water upwelling regions, High Salinity Shelf Water), depending on their geographic distribution. Adult females and juvenile males from Kerguelen Is. forage pelagically in frontal zones of the Southern Indian Ocean, while adult males forage benthically over the Kerguelen Plateau and the Antarctic Continental Shelf, with the two groups feeding at different trophic levels as shown by stable isotopes analysis. Oceanographic studies using the data collected from the seals have, to date, concentrated on circumpolar and regional studies of the Antarctic Circumpolar Current (ACC) circulation. The temperature and salinity profiles documented by elephant seals at high latitudes, including below sea ice, have permitted quasi-circumpolar mapping of the southernmost fronts of the ACC. By merging conventional data and the high temporal and spatial resolution data collected by seal-borne SRDLs, it has been possible to describe precisely 1) the large-scale features of the ACC in the South Atlantic and its variability; 2) the circulation pattern over the Kerguelen plateau, revealing that the poorly known Fawn Trough concentrates an important proportion of the ACC flow in that region. Seals that foraged in ice covered areas have made eulerian time series available that have allowed for the estimation of sea ice formation rates, a parameter that is otherwise difficult to obtain, while also providing a unique description of the wintertime ocean circulation over the central Weddell Sea continental shelf. Finally, we present the first data collected by a newly-developed fluorescence sensor that as been embedded in the regular CTD-SRDL and deployed on elephant seals at Kerguelen. The fluorometer data obtained have offered the first synoptic view of the 3 dimensional distribution of temperature, salinity and fluorescence over a vast sector of the Southern Indian Ocean, allowing us to describe both vertical and horizontal variations in chlorophyll. This paper will make a core contribution to the Plenary Sessions 2C, 3A and 4A, and will be relevant to 2A and 2B.

  • The effect of UVR on the viability of the culturable bacterial community fraction (CBC), and two of their isolated components (Arthrobacter-UVvi and Bizionia-UVps), was studied in the top few metres of the water column at Potter Cove, King George Island, Antarctica. Quartz flasks containing CBC from surface waters were exposed to solar radiation at depths of 0, 1 and 3 m. Similar experiments using UVps and UVvi isolates were performed. In some experiments interferential filters were used to discriminate photosynthetic active radiation (PAR), UV-A and UV-B. CBC from depths of 0, 10 and 30 m were also exposed to surface solar radiation. The deleterious effect of UVR was observed at the surface and at a depth of 1 m, but not at a depth of 3 m. Studies with interferential filters showed low bacterial viability values at depths of 0 and 1 m under both UVR treatments. However, under low radiation doses the effect attributed to UV-B was higher than that caused by UV-A. The surface CBC was more resistant to UVR compared with CBC from a depth of 30 m. The results showed that CBC inhabiting waters above the pycnocline (located at a depth of 5–10 m) are more efficiently adapted to UVR than are those from below the pycnocline. The impact of UVR on the marine bacterioplankton studied was only detected in the first metre of the stratified water column of Potter Cove, which has high levels of suspended particulate matter. These results support the evidence for a significant UVR-attenuating effect in the water column of this coastal Antarctic water.

  • The available ecological and palaeoecological information for two sea ice-related marine diatoms (Bacillariophyceae), Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen, suggests that these two species have similar sea surface temperature (SST), sea surface salinity (SSS) and sea ice proximity preferences. From phytoplankton observations, both are described as summer or autumn bloom species, commonly found in low SST waters associated with sea ice, although rarely within the ice. Both species form resting spores (RS) as irradiance decreases, SST falls and SSS increases in response to freezing ice in autumn. Recent work analysing late Quaternary seasonally laminated diatom ooze from coastal Antarctic sites has revealed that sub-laminae dominated either by T. antarctica RS, or by P. glacialis RS, are nearly always deposited as the last sediment increment of the year, interpreted as representing autumn flux. In this study, we focus on sites from the East Antarctic margin and show that there is a spatial and temporal separation in whether T. antarctica RS or P. glacialis RS form the autumnal sub-laminae. For instance, in deglacial sediments from the Mertz Ninnis Trough (George V Coast) P. glacialis RS form the sub-laminae whereas in similar age sediments from Iceberg Alley (Mac.Robertson Shelf) T. antarctica RS dominate the autumn sub-lamina. In the Dumont d'Urville Trough (Adélie Land), mid-Holocene (Hypsithermal warm period) autumnal sub-laminae are dominated by T. antarctica RS whereas late Holocene (Neoglacial cool period) sub-laminae are dominated by P. glacialis RS. These observations from late Quaternary seasonally laminated sediments would appear to indicate that P. glacialis prefers slightly cooler ocean–climate conditions than T. antarctica. We test this relationship against two down-core Holocene quantitative diatom abundance records from Dumont d'Urville Trough and Svenner Channel (Princess Elizabeth Land) and compare the results with SST and sea ice concentration results of an Antarctic and Southern Ocean Holocene climate simulation that used a coupled atmosphere–sea ice–vegation model forced with orbital parameters and greenhouse gas concentrations. We find that abundance of P. glacialis RS is favoured by higher winter and spring sea ice concentrations and that a climatically-sensitive threshold exists between the abundance of P. glacialis RS and T. antarctica RS in the sediments. An increase to >0.1 for the ratio of P. glacialis RS:T. antarctica RS indicates a change to increased winter sea ice concentration (to >80% concentration), cooler spring seasons with increased sea ice, slightly warmer autumn seasons with less sea ice and a change from ~7.5months annual sea ice cover at a site to much greater than 7.5months. In the East Antarctic sediment record, an increase in the ratio from <0.1 to above 0.1 occurs at the transition from the warmer Hypsithermal climate into the cooler Neoglacial climate (~4cal kyr) indicating that the ratio between these two diatoms has the potential to be used as a semi-quantitative climate proxy.

  • Swarming is a fundamental part of the life of Euphausia superba, yet we still know very little about what drives the considerable variability in swarm shape, size and biomass. We examined swarms across the Scotia Sea in January and February 2003 using a Simrad EK60 (38 and 120kHz) echosounder, concurrent with net sampling. The acoustic data were analysed through applying a swarm-identification algorithm and then filtering out all non-krill targets. The area, length, height, depth, packing-concentration and inter-swarm distance of 4525 swarms was derived by this method. Hierarchical clustering revealed 2 principal swarm types, which differed in both their dimensions and packing-concentrations. Type 1 swarms were generally small (<50m long) and were not very tightly packed (<10ind.m−3), whereas type 2 swarms were an order of magnitude larger and had packing concentrations up to 10 times greater. Further sub-divisions of these types identified small and standard swarms within the type 1 group and large and superswarms within the type 2 group. A minor group (swarm type 3) was also found, containing swarms that were isolated (>100km away from the next swarm). The distribution of swarm types over the survey grid was examined with respect to a number of potential explanatory variables describing both the environment and the internal-state of krill (namely maturity, body length, body condition). Most variables were spatially averaged over scales of ∼100km and so mainly had a mesoscale perspective. The exception was the level of light (photosynthetically active radiation (PAR)) for which measurements were specific to each swarm. A binary logistic model was constructed from four variables found to have significant explanatory power (P<0.05): surface fluorescence, PAR, krill maturity and krill body length. Larger (type 2) swarms were more commonly found during nighttime or when it was overcast during the day, when surface fluorescence was low, and when the krill were small and immature. A strong pattern of diel vertical migration was not observed although the larger and denser swarms tended to occur more often at night than during the day. The vast majority of krill were contained within a minor fraction of the total number of swarms. These krill-rich swarms were more common in areas dominated by small and immature krill. We propose that, at the mesoscale level, the structure of swarms switches from being predominantly large and tightly packed to smaller and more diffuse as krill grow and mature. This pattern is further modulated according to feeding conditions and then level of light.

  • Species of the genus Pyramimonas (Prasinophyceae) are a common, widespread, but minor component of the Antarctic marine phytoplankton. They are often associated with the seasonal sea-ice environment. Pyramimonas gelidicola (McFadden, Moestrup & Wetherbee, 1982) was isolated from the water column of a saline Antarctic lake, and observations on the organism’s life history as it grew in unialgal cultures were made. The alga proved to be pleomorphic: capable of producing several morphologically distinct life stages. We recorded motile single-celled quadriflagellates that formed two statistically distinct size classes, a rare uniflagellate cell-type, and aggregations of quadriflagellate cells, multilobed forms and an encystment stage. Multilobed forms and cell aggregations, never before observed in an Antarctic Pyramimonas species, are presumed to be growth medium-induced morphotypes. Multilobed forms contained an equal number of nuclei and lobes, suggesting that they are the product of asexual reproduction. Some of the morphotypes we report here may never be observed under natural field conditions, but the potential for this alga to alternate between morphotypes is clearly demonstrated.

  • Two sediment cores obtained from the continental shelf of the northern South Shetland Islands, West Antarctica, consist of: an upper unit of silty mud, bioturbated by a sluggish current, and a lower unit of well-sorted, laminated silty mud, attributed to an intensified Polar Slope Current. Geochemical and accelerator mass spectrometry 14C analyses yielded evidence for a late Holocene increase in sea-ice extent and a decrease in phytoplankton productivity, inferred from a reduction in the total organic carbon content and higher C : N ratios, at approximately 330 years B.P., corresponding to the Little Ice Age. Prior to this, the shelf experienced warmer marine conditions, with greater phytoplankton productivity, inferred from a higher organic carbon content and C : N ratios in the lower unit. The reduced abundance of Weddell Sea ice-edge bloom species (Chaetoceros resting spores, Fragilariopsis curta and Fragilariopsis cylindrus) and stratified cold-water species (Rhizosolenia antennata) in the upper unit was largely caused by the colder climate. During the cold period, the glacial restriction between the Weddell Sea and the shelf of the northern South Shetland Islands apparently hindered the influx of ice-edge bloom species from the Weddell Sea into the core site. The relative increases in the abundance of Actinocyclus actinochilus and Navicula glaciei, indigenous to the coastal zone of the South Shetland Islands, probably reflects a reduction in the dilution of native species, resulting from the diminished influx of the ice-edge species from the Weddell Sea. We also document the recent reduction of sea-ice cover in the study area in response to recent warming along the Antarctic Peninsula.

  • Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April?May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean?sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a ?blind spot? in our sampling coverage, enabling the establishment of a truly global ocean-observing system.

  • Investigations into Fe(II) cycling during two Southern Ocean mesoscale iron enrichment experiments, SOFeX and EIFeX, clearly show the importance of Fe(II) to iron speciation during these experiments. In both cases the added Fe(II) persisted significantly longer than its expected oxidation time indicating a significant Fe reduction process at work. During EIFeX diel studies showed a strong photochemically induced cycle in Fe(II) production in sunlit surface waters. Our results suggest that the photochemical cycling of iron may also be important in unfertilized waters of the Southern Ocean.

  • The annual trend in energy storage in the Antarctic minke whale was examined using catch data from all 18 survey years in the Japanese Whale Research Program (JARPA). Regression analyses clearly showed that blubber thickness, girth and fat weight have been decreasing for nearly 2 decades. The decrease per year is estimated at approximately 0.02 cm for mid-lateral blubber thickness and 17 kg for fat weight, corresponding to 9% for both measurements over the 18-year period. Furthermore, "date", "extent of diatom adhesion", "sex", "body length", "fetus length", "latitude", "age" and "longitude" were all identified as partially independent predictors of blubber thickness. The direct interpretation of this substantial decline in energy storage in terms of food availability is difficult, since no long-term krill abundance series is available. However, an increase in the abundance of krill feeders other than minke whales and a resulting decrease in the krill population must be considered as a likely explanation.

  • During the past ten years, the Antarctic Peninsula has been identified as the most rapidly warming region of the Southern Hemisphere and it is important to place this warming in the context of the natural climate and oceanographic variability of the recent geological past. Many biological proxies, such as marine diatom assemblages, have been used to determine Southern Ocean palaeoceanographic conditions during the Late Quaternary, however, few investigations have attempted to link observations of modern floras with the fossil record. In this study we examine a suite of modern austral spring (December 2003) and summer (February 2002) surface water samples from along the western Antarctic Peninsula (WAP) continental shelf and compare these to core-top, surface sediment samples. Using detrended correspondence analysis (DCA) and principal component analysis (PCA) of diatom abundance data we investigate the relationship of contemporary diatom floras with the fossil record. This multivariate analysis reveals that our modern assemblages can be divided into three groups: summer southern WAP sites, summer northern WAP sites, and spring WAP sites. Sea surface temperature (SST) is an important environmental variable for explaining seasonal differences in diatom assemblages between spring and summer, but sea surface salinity (SSS) is more important for understanding temporally-equivalent regional variations in assemblage. Our summer diatom samples are more reminiscent of early season assemblages, reflecting the unusually late sea ice retreat from the region that year. When the modern assemblages are compared to the fossil record, it is clear that most of the important diatoms from the summer assemblage are not preserved into the sediments, and that the fossil record more closely reflects spring assemblages. This observation is important for any future attempts to quantitatively reconstruct palaeoceanographic conditions along the WAP during the Late Quaternary and highlights the need for many more such studies in order to address longer timescales, such as interannual variability, in the context of the fossil record.

Last update from database: 12/1/25, 3:10 AM (UTC)

Explore

Topic

Resource type

Publication year

Online resource