Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 336 resources
-
The Amundsen Sea Embayment (ASE) drains approximately 35% of the West Antarctic Ice Sheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future ice sheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded ice sheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding line, and iii) seasonal open marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg-rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10–12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation.
-
Holocene climate variability in the southeast Atlantic sector of the Southern Ocean and Antarctic is assessed and quantified through integration of available marine sediment core and Antarctic ice core data. We use summer sea surface temperature (SSST) and sea ice presence (SIP) reconstructions from two marine sediment cores recovered north (50 °S) and south (53.2 °S) of the present day Antarctic Polar Front (APF), as well as an atmospheric temperature and sea ice proxy from the EPICA ice core from Dronning Maud Land (EDML). We find reasonably good agreement in the timing of climate evolution in the analyzed series. Almost all records show a gradual glacial-to-Holocene climate transition, interrupted by the Antarctic cold reversal around 13 000 cal yr BP, and early Holocene climatic optimum (HCO) at about 11 000 cal yr BP. During the early HCO, the seasonal ice cover retreats to south of 53 °S; it then readvances in the course of the mid- to late Holocene. The maximum winter sea ice edge position during the recent 10 000 years varied mainly within 51–53 °S, with sporadic growth to north of 50 °S, a position similar to that during the last glacial. The onset of the Neoglacial period after ca 4000 yr BP is associated with a steepening of the SSST gradient between the marine core sites, strengthening of the westerlies and cooling in the inland ice sheet. The agreement in timing between elevated SSST during the early HCO and decreased deuterium excess in EDML and other ice cores from different locations in the East Antarctic suggests that the retreat of sea ice during the early HCO and weakening of the APF was a general feature of the East Antarctic climate during that time.
-
Snow accumulation and its variability on the East Antarctic plateau are poorly understood due to sparse and regionally confined measurements. We present a 5.3 GHz (C-band) ground-penetrating radar (GPR) profile with a total length of 860 km recovered during the joint Norwegian–US International Polar Year traverse 2007/08. Mean surface mass balance (SMB) over the last 200 years was derived from the GPR data by identifying the volcanic deposition of the Tambora eruption in 1815. It varies between 9.1 and 37.7 kg m−2 a−1 over the profile, with a mean of 23.7 kg m−2 a−1 and a standard deviation of 4.7 kg m−2 a−1. The 200 year SMB estimated is significantly lower than most of the SMB estimates over shorter time periods in this region. This can be partly explained by a SMB minimum in the vicinity of the ice divide. However, it is more likely that a recent increase in SMB observed by several studies is largely responsible for the observed discrepancy.
-
Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile in- dependent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography) for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to get the best out of each data set. High resolution gridded data for upper and lower ice surface topographies and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and blended into the existing bathymetry map. The resulting global 1-minute topography data set (RTopo-1) contains maps for upper and lower ice surface heights, bedrock bathymetry, and consistent masks for open ocean, grounded ice, floating ice, and bare land surface.
-
The basal regions of continental ice sheets are gaps in our current understanding of the Earth's biosphere and biogeochemical cycles. We draw on existing and new chemical data sets for subglacial meltwaters to provide the first comprehensive assessment of sub-ice sheet biogeochemical weathering. We show that size of the ice mass is a critical control on the balance of chemical weathering processes and that microbial activity is ubiquitous in driving dissolution. Carbonate dissolution fueled by sulfide oxidation and microbial CO2 dominate beneath small valley glaciers. Prolonged meltwater residence times and greater isolation characteristic of ice sheets lead to the development of anoxia and enhanced silicate dissolution due to calcite saturation. We show that sub-ice sheet environments are highly geochemically reactive and should be considered in regional and global solute budgets. For example, calculated solute fluxes from Antarctica (72–130 t yr−1) are the same order of magnitude as those from some of the world's largest rivers and rates of chemical weathering (10–17 t km−2 yr−1) are high for the annual specific discharge (2.3–4.1 × 10−3 m). Our model of chemical weathering dynamics provides important information on subglacial biodiversity and global biogeochemical cycles and may be used to design strategies for the first sampling of Antarctic Subglacial Lakes and other sub-ice sheet environments for the next decade.
-
To determine P- and S-wave velocities, elastic properties and subglacial topography of the polythermal Fourcade Glacier, surface seismic and radar surveys were conducted along a 470-m profile in November 2006. P- and S-wave velocity structures were determined by travel-time tomography and inversion of Rayleigh wave dispersion curves, respectively. The average P- and S-wave velocities of ice are 3466 and 1839 m s-1, respectively. Radar velocities were obtained by migration velocity analysis of 112 diffraction events. An estimate of 920 kg m-3 for the bulk density of wet ice corresponds to water contents of 5.1 and 3.2%, which were derived from the average P-wave and radar velocities, respectively. Using this density and the average P- and S-wave velocities, we estimate that the corresponding incompressibility and rigidity of the ice are 6.925 and 3.119 GPa, respectively. Synergistic interpretation of the radar profile and P- and S-wave velocities indicates the presence of a fracture zone above a subglacial high. Here, the P- and S-wave velocities are approximately 5 and 3% less than in the ice above a subglacial valley, respectively. The S-wave velocities indicate that warmer and less rigid ice underlies 10–15 m of colder ice near the surface of the glacier. Such layering is characteristic of polythermal glaciers. As a relatively simple non-invasive approach, integration of P-wave tomography, Rayleigh wave inversion and ground-towed radar is effective for various glaciological studies, including the elastic properties of englacial and subglacial materials, cold/warm ice interfaces, topography of a glacier bed and location of fracture zones.
-
[1] Ground-based accumulation measurements are scarce on the high East Antarctic plateau, but highly necessary for model validation and the interpretation of satellite data for the determination of Antarctic mass balance. Here, we present accumulation results obtained from four shallow firn cores drilled in the Antarctic summer season 2007/2008. The cores were drilled along the first leg of the Norwegian-US IPY traverse through East Antarctica, visiting sites like Plateau Station and Pole of Relative Inaccessibility that have been covered by the South Pole Queen Maud Land Traverses (SPQMLT) in the 1960s. Accumulation has been determined from volcanic chronology established from the conductivity records measured by dielectric profiling (DEP). The Tambora 1815/unknown 1809 double peak is clearly visible in the conductivity data and serves as a reliable time marker. Accumulation rates averaged over the period 1815–2007 are in the range of 16 to 32 kg m−2 a−1, somewhat lower than expected from the SPQMLT data. The spatial pattern is mainly influenced by elevation and continentality. Three of the firn cores show a decrease of more than 20% in accumulation for the time period 1815–2007 in relation to accumulation rates during the period 1641–1815. The spatial representativity of the firn cores is assessed by ground-penetrating radar, showing a rather smoothly layered pattern around the drill sites. Validation of the DEP results is utilized by comparison with chemistry data, proving the validity of the DEP method for dating firn cores. The results help understanding the status of the East Antarctic ice sheet and will be important for e.g. future model-derived estimates of the mass balance of Antarctica.
-
Cryoconite holes form on ice due to enhanced ablation around particles deposited on the surface, and are present in the ablation area of glaciers worldwide. Here we investigate the use of Ground Penetrating Radar (GPR) as a non-destructive method to monitor and map cryoconite holes. We compare GPR data obtained from the Jutulsessen blue ice area in Dronning Maud Land, Antarctica, with modeled GPR data. The modeled GPR response to cryoconite holes is numerically calculated by solving Maxwell's equations with a 3D Finite-Difference Time-Domain (FDTD) scheme. The model includes a realistic shielded bowtie antenna and dimensions and constituent parameters of cryoconite holes excavated in the field. We have performed what-if scenarios with controlled variation of single parameters. We show that GPR can be used to determine the horizontal extent, depth and whether a cryoconite hole is frozen or contains liquid water, information unavailable from visual surface inspection. The cryoconite thickness can, for completely frozen holes, be determined to within a 1/4 of the GPR center frequency wavelength. The exact water content is not readily extractable because the GPR response is influenced by many other factors such as: cryoconite thickness, shape and roughness, as well as antenna ground coupling.
-
Interactions between the Southern Ocean and the Weddell Sea ice shelves are important both to the Antarctic Ice Sheet and to the production of globally significant water masses. Here we review the interaction between the Filchner-Ronne Ice Shelf and the shelf sea in which it floats. The continental shelf processes leading to the production of Weddell Sea deep and bottom waters from the original off-shelf source waters are discussed, and a new view is offered of the initial production of High-Salinity Shelf Water. Data from ship-based measurements at the ice front, from glaciological methods, and from measurements made within the sub–ice shelf cavity itself are used to describe the pattern of flows beneath the ice shelf. We also consider the variability observed within the cavity from tidal to interannual time scales and finish with a discussion of future research priorities in the region.
-
A large-scale force budget is a relatively simple but useful tool for initial investigation of ice dynamics; however, it requires an extensive data set. Identification of key measurement areas and assessment of the spatial variability of the required measurement accuracies is advantageous prior to measuring such large drainage basins. Identification of areas and assessment of data requires several steps and in the paper velocities and surface topography are modelled numerically for Jutulstraumen drainage basin, representing ~1% of the Antarctic ice sheet (124,000 km2). A preliminary large-scale force budget is calculated from the modelled results, and key areas are identified. Finally, the required measurement accuracies yielding 10% uncertainty of the estimated stresses are calculated through error propagation of the force budget equations. Based on the results it is recommended to prioritize more accurate measurements for determining the driving stresses for the entire basin, and the longitudinal stresses in the funnel area of Jutulstraumen. The required measurement accuracy varies strongly over the basin, limiting the effective use of remote sensed data for deriving stresses. Radar altimetry surface elevation data can be used on the lower half of the plateau, and InSAR velocity data on the lower parts of the plateau and down-glacier.
-
The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poorly known because of logistic constraints in extreme polar environments, and they represent one of the biggest challenges of Antarctic science. Snow accumulation is the most important parameter for the SMB of ice sheets. SMB varies on a number of scales, from small-scale features (sastrugi) to ice-sheet-scale SMB patterns determined mainly by temperature, elevation, distance from the coast, and wind-driven processes. In situ measurements of SMB are performed at single points by stakes, ultrasonic sounders, snow pits, and firn and ice cores and laterally by continuous measurements using ground-penetrating radar. SMB for large regions can only be achieved practically by using remote sensing and/or numerical climate modeling. However, these techniques rely on ground truthing to improve the resolution and accuracy. The separation of spatial and temporal variations of SMB in transient regimes is necessary for accurate interpretation of ice core records. In this review we provide an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.
Explore
Topic
- glasiologi
- AABW (1)
- akkumulasjon (9)
- Amundsenhavet (2)
- Antarctica (2)
- Antarktis (145)
- Antarktistraktaten 1959 (1)
- atmosfæren (2)
- batymetri (3)
- Belgica ekspedisjon (1)
- bentiske organismer (1)
- bibliometri (1)
- biodiversitet (1)
- biogeokjemi (1)
- biografi (1)
- biologi (5)
- biosfære (1)
- blåis (5)
- bølger (2)
- botanikk (1)
- Bouvetøya (4)
- brehylle (10)
- bunnvann (1)
- Carsten Egeberg Borchgrevink (1)
- Cosmogenic isotopes (1)
- Cosmogenic nuclide surface exposure age dating (1)
- database (2)
- Deglaciation (1)
- deglasiasjon (2)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Den Norske Antarktisekspedisjonen 1956-60 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- Det Internasjonale polaråret 2007 (2)
- drivhuseffekt (1)
- Dronning Maud Land (163)
- ekspedisjoner (43)
- firnsnø (3)
- fjernanalyse (3)
- fjernmåling (4)
- fjord (1)
- forskning (33)
- fugler (1)
- fysisk geografi (4)
- geodesi (7)
- geofysikk (38)
- geografi (7)
- geokjemi (4)
- geologi (33)
- geomorfologi (5)
- Geomorphology (1)
- georadar (2)
- geotermisk strømning (1)
- geovitenskap (6)
- Glacial history (1)
- Glaciation (1)
- glasiokjemi (1)
- global oppvarming (6)
- gravimetri (2)
- havbølger (1)
- havbunnen (5)
- havet (1)
- havis (24)
- havnivå (3)
- havnivåstigning (18)
- havstrømmer (2)
- historie (1)
- holocene (3)
- hvalfangst (1)
- hydrografi (2)
- hydrokjemi (1)
- hydrologi (4)
- Ice sheet (1)
- Ice Shelf (1)
- iceberg calving (1)
- IGY 1957-58 (1)
- innlandsis (70)
- is (11)
- is radar (1)
- isberg (7)
- isbre (6)
- isbreer (35)
- isbrem (21)
- isfjell (12)
- isfront (5)
- isgjennomtrengende (1)
- iskjerner (22)
- iskrystaller (1)
- ismeltvann (1)
- isshelf (66)
- issmelting (2)
- isstrøm (16)
- istykkelse (2)
- jordmagnetiske målinger (1)
- kalv (2)
- kalving (6)
- karbondioksid (1)
- kartlegging (4)
- kartografi (1)
- kjemi (3)
- klima (13)
- klimaendringer (32)
- klimamodeller (5)
- klimatologi (24)
- konferanse (1)
- konferanser (1)
- kongress (1)
- kontinentalsokkel (7)
- laboratorieeksperimenter (1)
- Last Glacial Maximum (1)
- lille istiden (1)
- litteratur (1)
- logistikk (2)
- målinger (1)
- marin biologi (4)
- marin geofysikk (2)
- marin geologi (6)
- maringeologi (1)
- marinøkologi (1)
- Maudheim (Antarktis) (1)
- Maudheimekspedisjonen (26)
- metamorfologi (1)
- meteorologi (31)
- miljøendringer (2)
- miljøforskning (1)
- miljøvern (1)
- modellering (1)
- Modelling (1)
- morfologi (5)
- NARE 1976/77 (2)
- NARE 1978/79 (8)
- NARE 1984/85 (3)
- NARE 1989/90 (3)
- NARE 1991/92 (3)
- NARE 1992/93 (6)
- NARE 1993/94 (5)
- NARE 1996/97 (7)
- NARE 1997/98 (2)
- NARE 2000/01 (3)
- NARE ekspedisjoner (3)
- naturressurser (1)
- NAX (1)
- NBSAE 1949-52 (26)
- Norge (1)
- Norsk-britisk-svenske antarktisekspedisjon (26)
- Norsk Polarinstitutt (1)
- Norvegia ekspedisjoner (1)
- Norwegian Antarctic Expedition 1968-69 (1)
- NSBX 1949-52 (27)
- numerisk modellering (1)
- nunataker (3)
- observasjoner (5)
- oppdagelsesreiser (1)
- ornitologi (4)
- oseanografi (31)
- overflateakkumulering (1)
- overvintring (1)
- paleoglasiologi (2)
- paleoklimatologi (11)
- polarekspedisjoner (1)
- polarforskning (4)
- polarimetrisk radar (1)
- polarområdene (16)
- Quaternary (1)
- radar observasjoner (3)
- radarundersøkelse (1)
- radarundersøkelser (1)
- radioaktivitet (1)
- Radiocarbon dating (1)
- satellite altimetri (1)
- satellite bilder (5)
- satellite mikrobølgesensorer (1)
- satellitt (1)
- satellittbilder (5)
- satellitteknologi (1)
- Sea level (1)
- sedimenter (4)
- sedimentologi (5)
- seismisk undersøkelse (1)
- seismologi (9)
- sjøis (2)
- sjøvann (1)
- smelting (12)
- snø (16)
- snø akkumulasjon (1)
- snø radar (1)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (75)
- Sørpolen (1)
- stabile isotoper (3)
- storbreen (1)
- stratigrafi (12)
- subglasial (1)
- subglasial biodiversitet (1)
- subglasial geologi (1)
- subglasial innsjø (7)
- subglasial topografi (1)
- Sydpolen (2)
- symposium (2)
- teknologi (6)
- telemetri (1)
- tidevannsbreen (1)
- tidevannsmålinger (1)
- tidsserieanalyse (1)
- tomografi (1)
- topografi (14)
- transantarktiske ekspedisjoner (2)
- vannmasser (4)
- vitenskap (1)
- Vostoksjøen (1)
- vulkaner (2)
- Weddellhavet (14)
- zoologi (1)
Resource type
- Book (14)
- Book Section (58)
- Conference Paper (2)
- Document (6)
- Journal Article (251)
- Manuscript (1)
- Report (2)
- Thesis (2)
Publication year
-
Between 1900 and 1999
(164)
-
Between 1920 and 1929
(1)
- 1928 (1)
-
Between 1930 and 1939
(1)
- 1933 (1)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (26)
- Between 1960 and 1969 (17)
- Between 1970 and 1979 (19)
- Between 1980 and 1989 (38)
- Between 1990 and 1999 (59)
-
Between 1920 and 1929
(1)
-
Between 2000 and 2025
(172)
- Between 2000 and 2009 (58)
- Between 2010 and 2019 (72)
- Between 2020 and 2025 (42)