Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Search

Full bibliography 2,853 resources

  • Exploratory activities of Norwegians, particularly those directed by Lars Christensen, off eastern Antarctica are discussed briefly in relation to contemporary Antarctic investigations and politics. The interests of Norway there and Christensen's role in establishing an understanding of the local coastline are indicated. Particular attention is paid to the landing made by Klarius Mikkelsen in the Vestfold Hills, East Antarctica, on 20 February 1935. Note is taken of the site's recent re-discovery, and the symbolic role of the landing in the national aspirations of Norway, Britain, and Australia is discussed. Mikkelsen operated under commercial and scientific interests promoted by Christensen, and his landing was, at least in published material, seen as an extension of them. However, there is a suggestion that not only had a new Norwegian land been discovered, and a landing made, but that a claim to it was at least considered. Such a claim was not appropriate given previous agreements between Norway and Britain. The site's location and environs are discussed, as are subsequent flights over it and visits made there by Australian expeditioners. The ambiguity associated with claims that Caroline Mikkelsen was the first woman to land on the Antarctic mainland is also examined. Since Mikkelsen's site was on an island within the Tryne Group, to the north of Davis station, if a mainland location is required to establish such an event, then an alternative (Scullin Monolith) is proposed; however, on this occasion four women were involved, but who was first ashore remains uncertain.

  • A new species of Parmelia (lichenized Ascomycotina) from the Antarctic. Parmelia lindsayana Ovstedal & Elix from Signy Island (South Orkney Islands) is described as new. This species resembles P. protosulcata Hale and P. cunninghamii Crombie, but differs in morphological details and in containing usnic, alpha-collatolic and alectoronic acids.

  • A parameterization is introduced for the prediction of cloud water in the National Center for Atmospheric Research Community Climate Model version 3 (CCM3). The new parameterization makes a much closer connection between the meteorological processes that determine condensate formation and the condensate amount. The parameterization removes some constraints from the simulation by allowing a substantially wider range of variation in condensate amount than in the standard CCM3 and tying the condensate amount to local physical processes. The parameterization also allows cloud drops to form prior to the onset of grid-box saturation and can require a significant length of time to convert condensate to a precipitable form, or to remove the condensate. The free parameters of the scheme were adjusted to provide reasonable agreement with top of atmosphere and surface fluxes of energy. The parameterization was evaluated by a comparison with satellite and in situ measures of liquid and ice cloud amounts. The effect of the parameterization on the model simulation was then examined by comparing long model simulations to a similar run with the standard CCM and through comparison with climatologies based upon meteorological observations. Global ice and liquid water burdens are higher in the revised model than in the control simulation, with an accompanying increase in height of the center of mass of cloud water. Zonal averages of cloud water contents were 20%–50% lower near the surface and much higher above. The range of variation of cloud water contents is much broader in the new parameterization but was still not as large as measurements suggest. Differences in the simulation were generally small. The largest significant changes found to the simulation were seen in polar regions (winter in the Arctic and all seasons in the Antarctic). The new parameterization significantly changes the Northern Hemisphere winter distribution of cloud water and improves the simulation of temperature and cloud amount there. Small changes were introduced in the cloud fraction to improve consistency of the meteorological parameterizations and to attempt to alleviate problems in the model (in particular, in the marine stratocumulus regime). The small changes did not make any appreciable improvement to the model simulation. The new parameterization adds significantly to the flexibility in the model and the scope of problems that can be addressed. Such a scheme is needed for a reasonable treatment of scavenging of atmospheric trace constituents, and cloud aqueous or surface chemistry. The addition of a more realistic condensate parameterization provides opportunities for a closer connection between radiative properties of the clouds, and their formation and dissipation. These processes must be treated for many problems of interest today (e.g., anthropogenic aerosol–climate interactions).

  • There has been a substantial increase in the number of people living and operating in isolated, confined, and artificially engineered environments, such as spacecraft, deep diving, weather stations, submarines, and polar outposts. This article gives an overview of research undertaken in a variety of extreme environments in an effort to better understand how semiautonomous, task-oriented groups operating within these environments develop over time, as well as identification of the individual characteristics that promote performance under such circumstances. Research reviewed includes space simulation studies for the European Space Agency (ESA) where groups were isolated in hyperbaric chambers, as well as findings from polar expeditions, space missions, submarine missions, and other military settings. Findings from the space simulation studies in hyperbaric chambers provided empirical evidence for interpersonal issues anecdotally reported in Antarctica and in other isolated, operational team environments, such as "scapegoating" of deviant crew members, displacement of aggression to outside personnel, and time patterns in psychological reactions. No indications of a "psychological limit" for how long people can tolerate remaining in isolation and confinement were found. Certain personality characteristics were consistently associated with coping, and individuals characterized by strong achievement motivation combined with interpersonal sensitivity seemed to adapt better than others. Together, these results have implications for selection and training of people operating within extreme environments.

  • The stabilities of two different circulation regimes in the North Atlantic, 1) the present thermohaline circulation and 2) a weaker thermohaline circulation, are compared using the Hamburg Large Scale Geostrophic (LSG) ocean circulation model. The latter circulation regime is obtained by restoring the LSG model toward an on average 48C warmer air surface temperature corresponding to a doubled atmospheric content of CO 2 . The stabilities of these stationary states are investigated by imposing various amounts of stochastic noise on the surface freshwater flux. The simulations show more variability on secular timescales for the present than for the warm climate. Since the modeled static stabilities for the two climates are relatively similar, the different rates of variability are probably connected to other mechanisms. In the present climate at high latitudes the two buoyancy fluxes due to heat and freshwater are of similar magnitudes but with opposite signs; thus switches between convective and nonconvective periods at secular timescales are possible. In the warm climate the buoyancy flux due to heat dominates. This compensates the effect of the noisy freshwater forcing and thus reduces the potential for secular oscillations. The stronger coupling between the Atlantic and the Southern Ocean for the present relative to the warm climate could also contribute to this difference. Furthermore, the simulations show that the variability of the Antarctic Circumpolar Current transport for the present climate exceeds that of the warm climate. For increasing stochastic noise the present circulation approaches that of the warm circulation. The authors apply a mixture of heat flux and temperature restoring for the surface boundary condition. Comparison with similar works, which apply a pure restoring for surface temperature, shows that the ocean circulation is much less sensitive to forced stochastic freshwater anomalies with the type of boundary condition used herein. A box model is used to illustrate the effects of the surface temperature parameterizations and the different buoyancy forcing for the present and warm climate.

  • A new muscicolous lichen species, Caloplaca lewis-smithii Søchting & Øvst., is described from Victoria Land, continental Antarctica. It is characterized by a grey to blackish brown microlobate thallus and a blackish apothecial disk with a white pruinose thalline margin.

  • During the austral summer of 1993-94 a number of 1-2 m deep snow pits were sampled in connection with firn-coring in western Dronning Maud Land, Antarctica. The traverse went from 800 to about 3000 m a.s.l. upon the high-altitude plateau. Profiles of cations (Na+, K+, Mg2+, Ca2+), anions (Cl−, NO3-, SO42- , CH3SO3−) and stable oxygen isotopes (δ18O) from 11 snow pils are presented here. Close to the coast 2 m of snow accumulates in about 2-3 years, whilst at sites on the high-altitude plateau 2 m of snow accumulates in 10—14 years. The spatial variation in ion concentrations shows that the ions can be divided into two groups, one with sea-salt elements and methane sulfonate and the other with nitrate and sulfate. For the sca-salt elements and methane sulfonate the concentrations decrease with increasing altitude and increasing distance from the coast, as well as with decreasing temperature and decreasing accumulation rate. For nitrate and sulfate the concentrations are constant or increase with respect to these parameters. This pattern suggests that the sources for sca-salt elements and methane sulfonate are local, whereas the sources for nitrate and sulfate are a mixture of local and long-range transport.

  • 1. Two hypotheses may explain how long-lived seabirds regulate the food provisioning to their chick. The fixed level of investment hypothesis states that the parents provide food for their chick according to an intrinsic rhythm, independent of their chick's need. The flexible investment hypothesis states that the parents adjust their food provisioning both according to their chick's and their own need. 2. We tested how the Antarctic petrels adjust the food-provisioning according to their own body condition or to their chick's need. First, we selected parents in poor and good body condition. Then we gave all parents randomly a chick of different body mass, but of the same age. We then measured the chicks daily until they were fed for the first time after swapping. 3. Parents in good body condition at hatching were more likely to produce a chick that was still alive 9 days after hatching than parents in poor body condition. Chick body mass at day 9 and at the end of the guarding period was positively related to the mean body condition of the parents at hatching. 4. The meal size provided by parents in good body condition was larger than that provided by parents in poor body condition. Parents in good body condition delivered more food to small than to large chicks, whereas no such relationship was found among parents in poor body condition. 5. Our results suggest that the Antarctic petrel parents adjust the amount of food delivered to their chick according to both the chick's need and their own body condition, and that the ability to respond to the chick's need is dependent upon their own body condition.

  • In Procellariiformes, the parents guard the chick after it has attained homeothermy. This strategy may reduce the probability that a small chick is taken by predators, but is costly as only one parent can forage at a time. The decision to leave the chick may therefore be a compromise between the chick's vulnerability to predators, the body condition of the parent on the nest and whether the foraging parent returns in time. We studied how the number of days that parents guarded the chick was related to the body mass of the parent at the nest and the time the foraging parent spent at sea in the Antarctic petrel Thalassoica antarctica. We also examined how the body mass of the parent on the nest and the duration of the foraging trips influenced the chicks' body condition at the end of the guarding period. When the foraging parent did not return to the nest in time to relieve its mate, the number of days the parent on the nest kept guarding the chick was positively related to its body mass on arrival in the colony. The number of days the foraging parent spent at sea was positively related to the body mass of its mate, but those that returned in time had a shorter stay at sea relative to their mate's body mass than those that did not return before their mate had left. Apparently, both the body mass of the parent at the nest and the ability of the foraging parent to adjust its stay at sea to the mate's body mass is important for the number of days the parents guard the chick and also the chick's body condition at this point. The inability to return to the nest before the mate has left may be the result of needing a minimum amount of time at sea to find food, or because some parents having low foraging success and therefore prolong their stay at sea.

  • We studied the influence of the semi-annual oscillation (SAO) on near-surface temperatures in Antarctica, using observations of 27 stations that were operational during (part of) the period 1957–79. For the annual cycle of surface pressure, the second harmonic explains 17–36% of the total variance on the Antarctic Plateau, 36–68% along the East Antarctic coast and almost 80% on the west coast of the Peninsula, and decreases further to the north. As a result of the amplification of the wave-3 structure of the circulation around Antarctica, a significant modification of the seasonal cooling is observed at many stations. The magnitude of this modification is largely determined by the strength of the temperature inversion at the surface: the percentage of the variance explained by the second harmonic of the annual temperature cycle is then largest on the Antarctic Plateau (11–18%), followed by the large ice shelves and coastal East Antarctica (6–12%) and stations at or close to the Peninsula (0–5%). A significant coupling between the half-yearly wave in surface pressure and that in surface temperature is found for coastal East Antarctica, which can be directly explained by the changes in meridional circulation brought about by the SAO. We show that the coupling of Antarctic temperatures to the meridional circulation is not only valid on the seasonal time scale of the SAO, but probably also on daily and interannual time scales. This has important implications for the interpretation of time series of Antarctic temperatures, a problem that will be addressed in part 2 of this paper.

  • Following a weakening of the semi-annual oscillation (SAO) since the mid-1970s, the half-yearly pressure wave in the Southern Hemisphere has become less significant. As a result, May/June temperatures have decreased in East Antarctica, which has moderated Antarctic warming. Spectral analysis of 87 years of pressure data at Orcadas suggest that the recent weakening of the SAO is part of the natural variability of the Southern Hemisphere circulation on decadal timescales. We interpret the time series of composite Antarctic temperature in terms of the historical strengthening and weakening of the SAO. If the dominant oscillations that occurred in the past prove to be persistent, an accelerated East Antarctic warming trend is expected for the coming decades. There are indications that the strength of the SAO is linked to the Southern Oscillation, in the sense that warm phases of the Southern Oscillation coincide with strong westerlies, a weakly developed SAO and below-average temperatures in East Antarctica. Temperatures on the west coast of the Antarctic Peninsula show strongly deviant patterns, which can not be explained by the same mechanism that applies to East Antarctica.

  • Comparisons of total column ozone measurements from Dobson, Brewer and SAOZ instruments are presented for the period 1990 to 1995 at seven stations covering the mid- and the high northern latitudes, as well as the Antarctic region. The main purpose of these comparisons is to assess, by reference to the well established Dobson network, the accuracy of the zenith-sky visible spectroscopy for the measurement of total ozone. The strengths and present limitations of this latter technique are investigated. As a general result, the different instruments are found to agree within a few percent at all stations, the best agreement being obtained at mid-latitudes. On average, for the mid-latitudes, SAOZ O3 measurements are approximately 2% higher than Dobson ones, with a scatter of about 5%. At higher latitudes, both scatter and systematic deviation tend to increase. In all cases, the relative differences between SAOZ and Dobson or Brewer column ozone are characterised by a significant seasonal signal, the amplitude of which increases from about 2.5% at mid-latitude to a maximum of 7.5% at Faraday, Antarctica. Although it introduces a significant contribution to the seasonality at high latitude, the temperature sensitivity of the O3 absorption coefficients of the Dobson and Brewer instruments is shown to be too small to account for the observed SAOZ/Dobson differences. Except for Faraday, these differences can however be largely reduced if SAOZ AMFs are calculated with realistic climatological profiles of ozone, pressure and temperature. Other sources of uncertainties that might affect the comparison are investigated. Evidence is found that the differences in the air masses sampled by the SAOZ and the other instruments contribute significantly to the scatter, and the impact of the tropospheric clouds on SAOZ measurements is displayed.

  • The efficiency of physical concentration mechanisms for enrichment of algae and bacteria in newly formed sea-ice was investigated under defined conditions in the laboratory. Sea-ice formation was simulated in a 3,000 l tank under different patterns of water movement. When ice formed in an artificially generated current pattern, algal cells were substantially enriched within the ice matrix. Enrichment factors for chlorophyll a calculated from the ratio between the concentrations in ice and underlying water reached values of up to 53. Repeated mixing of ice crystals into the water column, as well as flow of water through the new ice layer, contributed to the enrichment of algae in the ice. Wave action during ice formation revealed lower phytoplankton enrichment factors of up to 9. Mixing of floating ice crystals with underlying water and pumping of water into the ice matrix by periodical expansion and compression of the slush ice layer were responsible for the wave-induced enrichment of algal cells. Physical enrichment of bacteria within the ice was negligible. Bacterial biomass within new ice was enhanced only when the concentration of algae was high. At low algal biomass, bacteria experienced substantial losses in the ice, most likely due to brine drainage, which were not observed for the microalgae. Bacterial cells are therefore not scavenged by ice crystals and the observed enrichment and sustainment of bacterial biomass within newly formed ice depend on their attachment to cells or aggregates of algae. Division rates of bacteria changed only slightly during ice formation.

Last update from database: 6/26/24, 9:10 AM (UTC)

Explore

Topic

Publication year

Online resource