Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 212 resources
-
Based on the temporal distribution, abundance, and taxonomic composition of wood floras, four phases of vegetation development are recognized through the Cretaceous to Early Tertiary of the Antarctic Peninsula: (1) Aptian to Albian communities dominated by podocarpaceous, araucarian, and minor taxodiaceous/cupressaceous conifers with rare extinct gymnosperms (Sahnioxylon). (2) Progressive replacement of these communities in ?Cenomanian to Santonian times by angiosperms, most without modern analogues. (3) Increasing dominance of angiosperms becoming important both in terms of diversity and abundance towards the mid-Late Cretaceous. (4) Modernization of the flora during the Campanian to Maastrichtian with the extinction of earlier forms, appearance of the Nothofagaceae and diversification of associated elements. These patterns broadly follow trends seen in the leaf and palynological record but with some important differences. During the Cretaceous, conifer composition undergoes a change whereby Phyllocladoxylon-type woods increase relative to the older Podocarpoxylon forms. During the Paleocene to Eocene period, a marked extinction in wood types occurs associated with an increase in the abundance of nothofagaceous wood. Detailed examination of wood abundance and distributions from sections within Maastrichtian and Paleocene formations points to strong environmental control on taxonomic compositions. Similar differences are encountered when comparing coeval floras from different geographic regions and palaeoenvironments.
-
Excellent outcrops in Dronning Maud Land, Antarctica, provide unique insight into the mode and extent of fluid infiltration into metamorphic and plutonic rocks in the middle crust. The fluids are liberated from pegmatitic veins and give rise to alteration halos. In the alteration halos, the conspicuous change in colour is correlated with (1) hydration mineral reactions, and (2) high density of microcracks in quartz and feldspar exceeding that observed in the unaltered host rock by an order of magnitude. The field relations indicate that the veins originated as melt-driven hydraulic fractures, sealed by pegmatite and aplite crystallising from volatile-rich melts, with the alteration halo being the wake of the process zone formed at the tip of the propagating fractures. It is proposed that (1) the size of the alteration zone and the width of the vein are correlated, resulting in higher values of both these quantities for cracks propagating at higher velocities and consequently higher crack propagation toughnesses; (2) the damage zone is characterised by a transient state of high permeability which was short-lived due to rapid healing and sealing of microcracks; (3) the infiltration and retrogression of the high-grade rocks can be considered as a quasi-instantaneous process on geologic time scales with a duration of hours to weeks.
-
Information about the spatial variations of snow properties and of annual accumulation on ice sheets is important if we are to understand the results obtained from ice cores, satellite remote sensing data and changes in climate patterns. The layer structure and spatial variations of physical properties of surface snow in western Dronning Maud Land were analysed during the austral summers 1999/2000, 2000/01 and 2003/04 in fi ve different snow zones. The measurements were performed in shallow (1 - 2 m) snow pits along a transect extending 350 km from the seaward edge of the ice shelf to the polar plateau. These pits covered at least the last annual accumulation and ranged in elevation from near sea level to 2500 m a.s.l. The ?18O values and accumulation rates had a good linear correlation with the distance from the coast. The mean accumulation on the ice shelf was 312 ± 28 mm water equivalent (w.e.); in the coastal region it was 215 ± 43 mm w.e. and on the polar plateau it was 92 ± 25 mm w.e. The mean annual conductivity and grain size values decreased exponentially with increasing distance from the ice edge, by 48 %/100 km and 18 %/100 km respectively. The mean grain size varied between 1.5 and 1.8 mm. Depth hoar layers were a common phenomenon, especially under thin ice crusts, and were associated with low dielectric constant values.
-
The Mühlig-Hofmann- and Filchnerfjella in central Dronning Maud Land, Antarctica, consist of series of granitoid igneous rocks emplaced in granulite and upper amphibolite facies metamorphic rocks. The area has experienced high-temperature metamorphism followed by near-isothermal decompression, partial crustal melting, voluminous magmatism and extensional exhumation during the later phase of the late Neoproterozoic to Cambrian Pan-African event. Remnants of kyanite–garnet–ferritschermakite–rutile assemblages indicate an early higher-pressure metamorphism and crustal overthickening. The gneisses experienced peak granulite facies temperatures of 800–900 °C at intermediate pressures. Breakdown of garnet + sillimanite + spinel-bearing assemblages to cordierite shows subsequent re-equilibration to lower pressures. An E–W foliation dominating the gneisses illustrates transposition of migmatites and leucocratic melts which evolved during the near-isothermal decompression. Occurrence of extensional shear bands and shear zones evolving from the ductile partial melting stage through semiductile towards brittle conditions, shows that the uplift persisted towards brittle crustal conditions under tectonic W/SW-vergent extension. Late-orogenic Pan-African quartz syenites intruded after formation of the main gneiss fabric contain narrow semiductile to brittle shear zones, illustrating that the extensional exhumation continued also after their emplacement. The latest record of the Pan-African event is late-magmatic fluid infiltration around 350–400 °C and 2 kbar. At this stage the Pan-African crust had undergone 15–20 km exhumation from the peak granulite facies conditions. We conclude that the later phase of the Pan-African event in central Dronning Maud Land is characterized by a near-isothermal decompression P–T path and extensional structures indicating tectonic exhumation, which is most likely related to a late-orogenic collapsing phase of the Pan-African orogen.
-
The Holocene climate of the Southern Ocean is not well understood, mainly because of the lack of high-resolution reconstructions of ocean surface properties. Here we present a 12,500-yr-long, decadal-scale record of Holocene sea-surface temperatures and sea- ice presence from the Polar Front of the East Atlantic Southern Ocean. The record shows gradual climate change, with no abrupt Neoglacial cooling, and an unprecedented late Holocene warming. The dominant forcing factor appears to be precessional insolation; Northern Hemisphere summer insolation correlates to at least the early to middle Holocene climate trend. Spectral analysis reveals centennial-scale cyclic climate changes with periods of 1220, 1070, 400, and 150 yr. The record shows good correlation to East Antarctic ice cores and to climate records from South Georgia and Bunger Oasis. However, the record shows out-of-phase behavior with regard to climate records from the western Antarctic Peninsula and the Peru-Chile Current; such behavior hints at a climatic divide through Patagonia, the Drake Passage, and between West and East Antarctica.
-
Ocean Drilling Program Site 1165 penetrated drift sediments on the East Antarctic continental rise and recovered sediments from a low-energy depositional environment. The sediments are characterized by prominent alternations between a green to greenish-gray diatom-bearing hemipelagic facies and gray to dark gray hemiturbiditic facies. Our investigation of an upper Miocene section, using high-resolution color spectra, multisensor core logs, and X-ray fluorescence scans, reveals that sedimentation changes occur at Milankovitch orbital frequencies of obliquity and precession. We use this finding to derive an astronomical calibrated time scale and to calculate iron mass-accumulation rates, as a proxy for sediment-accumulation rates. Terrigenous iron fluxes change by as much as 100% during each obliquity cycle. This change and an episodic pattern of enhanced ice-rafted debris deposition during times of deglaciation provide evidence for a dynamic and likely wet-based late Miocene East Antarctic Ice Sheet (EAIS) that underwent large size variations at orbital time scales. The dynamic behavior of the EAIS implies that a significant proportion of the variability seen in oxygen isotope records of the late Miocene reflects Antarctic ice-volume changes.
-
Dronning Maud Land contains a fragment of an Archaean craton covered by sedimentary and magmatic rocks of Mesoproterozoic age, surrounded by a Late Mesoproterozoic metamorphic belt. Tectonothermal events at the end of the Mesoproterozoic and in Late Neoproterozoic–Cambrian times (Pan-African) have been proved within the metamorphic belt. In western Dronning Maud Land a juvenile Mesoproterozoic basement was accreted to the craton at c. 1.1 Ga. Mesoproterozoic rocks were also detected by zircon SHRIMP dating of gneisses in central Dronning Maud Land, followed by a long hiatus for which geochronological data are lacking, an amphibolite to granulite facies metamorphism and syntectonic granitoid emplacement of Pan-African age have been dated. During this orogeny older structures were completely overprinted in a sinistral tranpressive deformation regime, leading to the mainly coast-parallel tectonic structures of the East Antarctic Orogen. Putting Antarctica back in its Gondwana position, the East Antarctic Orogen continues northward in East Africa as the East African Orogen, whereas a connection to the marginal Ross Orogen at the Pacific margin of East Antarctica is suggested along the Shackleton Range. The East Antarctic-East African Orogen resulted from closure of the Mozambique Ocean and collision of West and East Gondwana, i.e. western Dronning Maud Land was part of West Gondwana. During this collision the lithospheric mantle probably delaminated, allowing the asthenosphere to underplate the continental crust and producing heat for the voluminous, typically anhydrous, Pan-African granitoids of central Dronning Maud Land.
-
A 12.5 m long core was retrieved from the continental margin off Dronning Maud Land, Antarctica. Magnetostratigraphy, stable isotopes, 14C accelerator mass spectrometer and amino acid analyses indicate a continuous sediment record going back 1.3 Myr. Comparison of CaCO3 results with those from ODP Site 1089 and an index of North Atlantic Deep Water (NADW) influence in surface waters indicate that NADW upwelled along the Antarctic continental margin during the whole of this period. The mid-Pleistocene transition (1.0–0.6 Ma) was accompanied by an apparent decline in the NADW influence, and was followed by extended carbonate dissolution during the interglacials of marine isotope stages (MIS) 13 and 11. Less extensive periods of dissolution occur at the end of the interglacials younger than MIS 11. While interglacial dissolution is characteristic of the Pacific and Indian oceans, the carbon isotopes return to pre-transition values indicative of renewed NADW upwelling. The concentration of ice-rafted debris may reflect changes in the relative rate of interglacial sedimentation. It is speculated that the high ice rafted debris (IRD) concentrations during interglacials younger than 400 kyr may be due to a reduced relative sedimentation rate of other interglacial components whereas the low concentrations during interglacials before the mid-Pleistocene transition may be due to a higher relative sedimentation rate of these.
-
Different magnitude scales are calculated for a set of volcano-tectonic earthquakes recorded in Deception Island Volcano (Antarctica). The data set includes earthquakes recorded during an intense seismic series that occurred in January–February 1999, with hypocentral distances that range between 0.5 and 15 km. This data set is enlarged to include some regional earthquakes with hypocentral distances up to 200 km. The local magnitude scale, ML, fixed at a hypocentral distance of 17 km, is used as the reference for the other magnitude scales studied in the present work. ML is determined on a standard Wood–Anderson simulated trace assuming a gain of 2080. Maximum peak-to-peak amplitudes are measured on the vertical components of a short-period sensor. The Mw scale is calculated, in the vertical component, both for P and S waves. The attenuation correction of the ground motion displacement spectra is introduced using data from coda waves studied in the area. The comparison between ML values and Mw estimations indicates severe discrepancies between both values. A magnitude–duration scale is calibrated from the comparison between coda durations of the recorded events and their assigned local magnitude scales. In order to investigate the causes of the discrepancy between the ML and Mw values we analyze two possible error sources: a wrong coda Q value, or the effects of the near-surface attenuation that initially are not taken into account in the correction of the ground displacement spectra. The analysis reveals that the main cause of this discrepancy is the effect of the near-surface attenuation. The near-surface attenuation is also the cause of the determination of an anomalous spectral decay slope, after the corner frequency, and the determination of this corner frequency value. This near-surface attenuation, represented by κ, is estimated over the data set, obtaining an average value of 0.025. With this κ value, the Mw scale is recalculated using an automatic algorithm. The new Mw values are more consistent with the ML values, obtaining a relationship of Mw=0.78ML−0.02.
-
The distribution of calcareous dinoflagellates has been analysed for the Maastrichtian–Miocene interval of Ocean Drilling Project Hole 689B (Maud Rise, Weddell Sea). The investigation thus represents a primary evaluation of the long-term evolution in high-latitude calcareous dinoflagellate assemblages during the transition from a relatively warm Late Cretaceous to a cold Neogene climate. Major assemblage changes during this interval occurred in characteristic steps: (1) an increase in relative abundance of tangentially structured species – particularly Operculodinella operculata – at the Cretaceous/Tertiary boundary; (2) a diversity decrease and several first and last appearances across the Middle–Late Eocene boundary, possibly attributed to increased climate cooling; (3) a diversity decrease associated with the dominance of Calciodinellum levantinum in the late Early Oligocene; (4) the reappearance and dominance of Pirumella edgarii in the Early Miocene, probably reflecting a warming trend; (5) monogeneric assemblages dominated by Caracomia spp. denoting strong Middle Miocene cooling. The results not only extend the biogeographic ranges of many taxa into the Antarctic region, but also indicate that the evolution of high-latitude calcareous dinoflagellate assemblages parallels the changing environmental conditions in the course of the Cenozoic climate transition. Therefore, calcareous dinoflagellates contribute to our understanding of the biotic effects associated with palaeoenvironmental changes and might possess the potential for reconstructing past conditions. The flora in the core includes one new taxon: Caracomia arctica forma spinosa Hildebrand-Habel and Streng, forma nov. Additionally, two new combinations are proposed: Fuettererella deflandrei (Kamptner, 1956) Hildebrand-Habel and Streng, comb. nov. and Fuettererella flora (Fütterer, 1990) Hildebrand-Habel and Streng, comb. nov.
-
During the Neoproterozoic, a supercontinent commonly referred to as Rodinia, supposedly formed at ca. 1100 Ma and broke apart at around 800–700 Ma. However, continental fits (e.g., Laurentia vs. Australia–Antarctica, Greater India vs. Australia–Antarctica, Amazonian craton [AC] vs. Laurentia, etc.) and the timing of break-up as postulated in a number of influential papers in the early–mid-1990s are at odds with palaeomagnetic data. The new data necessitate an entirely different fit of East Gondwana elements and western Gondwana and call into question the validity of SWEAT, AUSWUS models and other variants. At the same time, the geologic record indicates that Neoproterozoic and early Paleozoic rift margins surrounded Laurentia, while similar-aged collisional belts dissected Gondwana. Collectively, these geologic observations indicate the breakup of one supercontinent followed rapidly by the assembly of another smaller supercontinent (Gondwana). At issue, and what we outline in this paper, is the difficulty in determining the exact geometry of the earlier supercontinent. We discuss the various models that have been proposed and highlight key areas of contention. These include the relationships between the various ‘external’ Rodinian cratons to Laurentia (e.g., Baltica, Siberia and Amazonia), the notion of true polar wander (TPW), the lack of reliable paleomagnetic data and the enigmatic interpretations of the geologic data. Thus, we acknowledge the existence of a Rodinia supercontinent, but we can place only loose constraints on its exact disposition at any point in time.
-
The Jutulsessen nunataks (72°00′S; 2°30′E), Gjelsvikfjella, Dronning Maud Land (DML), consist mainly of migmatites of two types. A heterogeneous banded amphibolite facies gneisses and a more homogeneous part. In the more homogeneous part, partial melts form along axial planes to tight folds. Numerous pegmatitic dykes occur in both migmatites. The homogeneous part of the migmatite has a granodiorite composition. It displays the depletion of Nb–Ta typical for rocks from destructive plate margins and a strongly fractionated REE pattern, specially in LREE (La/Lu ratios varying between 500 and 800). SIMS dating of zircon from the homogeneous migmatite and two pegmatite dykes resulted in two age groups. A concordant age of 1163±6 Ma is calculated from zircon crystals with no rim/core structure and from cores from structurally complex crystals. This age represents the age of the protolith of the migmatite. A Cambrian age of 504±6 Ma is obtained from zircon rims and from sector-zoned zircons. This age represent the time of migmatisation. Sm–Nd depleted mantle model ages range from 1390 to 1770 Ma and suggest that the protolith to the migmatites contained components of older crust (pre-1163 Ma). An igneous complex consisting of a syenite plug (Stabben syenite), gabbroic rocks and aplitic dykes intrudes the metamorphic complex. The syenite and the aplitic dykes are neither deformed nor migmatised or penetrated by pegmatitic dykes. These rocks have elevated LREE and LILE concentrations with an La/Lu ratio of 450 and an Nb–Ta trough. The gabbroic rocks range in composition from melagabbro to monzogabbro and host numerous pegmatitic dykes. SIMS zircon U–Pb data from the Stabben syenite give an age of 500±8 Ma. This age is regarded as the intrusive age of the Stabben syenite. By the single zircon–Pb evaporation method an age of 495±14 Ma is obtained from the aplitic dykes. Sm–Nd depleted mantle model ages between 1800 and 2220 Ma indicate that the dykes formed from a Paleoproterozoic source. A Mesoproterozoic volcanic arc setting of DML and a correlation with the Natal Province, as suggested by several authors, is supported by data in this study. The studied area has consequently been a part of the Kaapvaal/Kalahari craton since Mesoproterozoic time. The Cambrian migmatisation and the intrusions are interpreted as a result of post-collision activity related to the collision between the Kalahari craton and the combined block of Antarctica and Australia during the final assembly of Gondwana. This collision is suggested to be included in the Kuunga Orogeny introduced by Meerat and Van der Voo [J. Geodynam. 23 (1997) 223].
-
A detailed and comprehensive map of the distribution patterns for both natural and artificial radionuclides over Antarctica has been established. This work integrates the results of several decades of international programs focusing on the analysis of natural and artificial radionuclides in snow and ice cores from this polar region. The mean value (37±20 Bq m−2) of 241Pu total deposition over 28 stations is determined from the gamma emissions of its daughter 241Am, presenting a long half-life (432.7 yrs). Detailed profiles and distributions of 241Pu in ice cores make it possible to clearly distinguish between the atmospheric thermonuclear tests of the fifties and sixties. Strong relationships are also found between radionuclide data (137Cs with respect to 241Pu and 210Pb with respect to 137Cs), make it possible to estimate the total deposition or natural fluxes of these radionuclides. Total deposition of 137Cs over Antarctica is estimated at 760 TBq, based on results from the 90–180° East sector. Given the irregular distribution of sampling sites, more ice cores and snow samples must be analyzed in other sectors of Antarctica to check the validity of this figure.
-
We present mid-Pliocene (4.3–2.6 Ma) benthic stable oxygen and carbon isotope data from Ocean Drilling Program Site 1092 (ODP Leg 177) drilled in the sub-Antarctic sector of the Southern Ocean. The results are compared with the stable isotope results from nearby Site 704 (ODP Leg 114). Oxygen isotope data show that minimum values are about 0.5‰ less than those of the Holocene, which is consistent with the results from Site 704, indicating only minor deglaciation of Antarctica during the studied interval. Oxygen isotope data from both Site 1092 and Site 704 are slightly higher relative to Pacific values during several intervals which could be related to the contribution of warm, saline North Atlantic Deep Water (NADW). Comparisons of benthic carbon isotope gradients between sites located in the North Atlantic, sub-Antarctic sector of the Southern Ocean, and Pacific indicate that at times, the gradient between the Southern Ocean and the Pacific evolved differently than the Atlantic–Pacific gradient. This suggests that variations in NADW strength alone might not be responsible for the observed carbon isotope values in the Southern Ocean.
-
Precambrian granitoid gneisses and Cambrian syenites occur in Mülig-Hofmann- and Filchnerfjella, Dronning Maud Land, Antartica. The nunataks of Dronning Maud land are characterized by alternating dark and light decolourised rocks. This phenomena is observed all along the mountain range for minimum 150 km length and occur in different rock types. The dark parts contain granulite facies mineral assemblages including perthite, plagioclase, orthopyroxene, garnet, biotite and cummingtonite. The light zones contain amphibolite facies minerals typically microcline, amphibole, biotite and titanite. The light zones are restricted to halos around aplite and pegmatite dykes. The widths of the halos range from cm to several meters. In the 800 m high wall of Rakekniven three sets of decolouration zones are observed. Decolouration along dykes is the typically occurrence of the phenomena, however in many places only small remnants of the dark coloured rocks occur and some nunataks are completely decolourised. In mineral scale the feldspars of light rocks are fractured and microveins occur filled by albite and white mica. The veins are irregular but occur in 2-3 main directions. Microstructures are studied towards the central dyke of decolouration zones; fracture density in the feldspars increase, perthite is transformed to microcline and plagioclase recrystallises to small grains of albite and white mica. We interpret the decolouration to be caused by fluid emanated from aplites and pegmatites interacting with the granulites. During the fluid infiltration granulite facies rocks are transformed to amphibolite facies rocks. Fracturing on mineral scale is the important mechanism for transporting fluids out into the wall rock from the dykes. The resulting recrystallisation allows for further fluid transport during breakdown of minerals and production of new grain boundaries. The process is thorough as whole nunataks are affected by the transformation. The frequent distribution of decolouration zones throughout the mountain range indicates a regional importance of the fluid infiltration process.
-
A detailed climate proxy record based on δ18O, δ13O, and grey index of a well-dated stalagmite from Cold Air Cave in the Makapansgat Valley of north-eastern South Africa suggests that regional precipitation, temperatures and vegetation oscillated markedly and rapidly over the last ∼6500 years on centennial and multi-decadal scales. The mid-Holocene prior to 5200 years ago was humid and warm. A fundamental transition occurred 3200 years ago, leading to drier and cooler conditions that culminated at 1750 AD. Comparisons with ice core records suggest synchronous changes implicating rapid global teleconnections.
-
The formation of Gondwana during the late Neoproterozoic to early Cambrian times (550-530 Ma) was traditionally viewed as the welding of two, more or less contiguous, Proterozoic continental masses called East and West Gondwana. The notion of a united West Gondwana is no longer tenable as a wealth of geochronologic and structural data indicate major orogenesis amongst its constituent cratons during the final stages of greater Gondwana assembly. The idea that East Gondwana may also have formed through the amalgamation of a collage of cratonic nuclei during the Cambrian is controversial. Recent paleomagnetic, geochronologic and structural data from elements of East Gondwana indicate that its formation may have extended well into Cambrian time. Thus, the terms ‘East’ and ‘West’ Gondwana may be relegated to convenient geographical terms rather than any connotation of tectonic coherence during the Proterozoic. In addition, the paleomagnetic data also challenge the conventional views of the Neoproterozoic supercontinent Rodinia and the SWEAT fit. Alternative variants including Protopangea and AUSWUS are not supported by paleomagnetic data during the interval 800–700 Ma.
-
Ages of six volcanic and plutonic rocks on Barton Peninsula, King George Island, were determined using 40Ar/39Ar and K-Ar isotopic systems. The 40Ar/39Ar and K-Ar ages of basaltic andesite and diorite range from 48 My to 74 My and systematically decrease toward the upper stratigraphic section. Two specimens of basaltic andesite which occur in the lowermost sequence of the peninsula, however, apparently define two distinct plateau ages of 52-53 My and 119-120 My. The latter is interpreted to represent the primary cooling age of basaltic andesite, whereas the former is interpreted as the thermally-reset age caused by the intrusion of Tertiary granitic pluton. The isochron ages calculated from the isotope correlation diagram corroborate our interpretation based on the apparent plateau ages. It is therefore likely that volcanism was active during the Early Cretaceous on Barton Peninsula. When the K-Ar ages of previous studies are taken into account with our result, the ages of basaltic andesite in the northern part of the Barton Peninsula are significantly older than those in the southern part. Across the north-west-south-east trending Barton fault bounding the two parts, there are significant differences in geochronologic and geologic aspects.
-
Antarctic climate history has been dominated by events and turning points with causes that are poorly understood. To fill the gaps in our knowledges new effort is underway in the international geologic community to acquire and coordinate the circum-Antarctic geologic data needed to derive and model paleoenvironments of the past 130 m.y. The effort, which focuses principally on using shallow (<100 m) stratigraphic drilling and coring to acquire the geologic data, is being led by the Antarctic Offshore Stratigraphy Project (ANTOSTRAT), a group that works under the aegis of the Scientific Committee on Antarctic Research (SCAR). About 40 scientists from 12 countries met this past summer in Wellington, New Zealand, at an ANTOSTRAT meeting to discuss strategies for implementing the desired paleoenvironmental field and modeling studies. The meeting was held in conjunction with the 8th International Symposium on Antarctic Earth Sciences.
Explore
Topic
- geologi
- Antarctic (skip) (1)
- Antarctica (1)
- Antarktis (91)
- Antarktistraktaten 1959 (1)
- arkeologi (1)
- astronomi (1)
- atmosfæren (1)
- batymetri (1)
- berggrunnsgeologi (1)
- biogeokjemi (1)
- biografi (3)
- biografier (4)
- biologi (8)
- botanikk (10)
- Bouvetøya (17)
- brehylle (2)
- Carl Anton Larsen (7)
- Carsten Borchgrevink (4)
- Carsten Egeberg Borchgrevink (2)
- chronostratigrafi (1)
- Cosmogenic nuclide surface exposure age dating (1)
- D/S Antarctic (5)
- D/S Jason (5)
- dagbok (2)
- dagbøker (1)
- datainnsamling (1)
- Deceptionøya (1)
- Deglaciation (1)
- deglasiasjon (1)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Den norske antarktisekspedisjonen 1956-60 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- diatomeer (1)
- drivhusgasser (1)
- Dronning Maud Land (90)
- ekspedisjonen (9)
- ekspedisjoner (59)
- fjellene (2)
- flora (1)
- forskning (48)
- forskningsinfrastruktur (1)
- forskningsprogram (1)
- første landgang (10)
- forurensning (1)
- fossiler (1)
- fugler (1)
- fysikk (2)
- fysisk geografi (2)
- geodesi (3)
- geofysikk (28)
- geografi (14)
- geokjemi (16)
- geokronologi (10)
- geomorfologi (5)
- Geomorphology (1)
- geostatistikk (1)
- geovitenskap (3)
- Glacial history (1)
- glasiologi (33)
- global oppvarming (1)
- grunnvann (1)
- havbunnen (5)
- havis (5)
- havnivå (1)
- havnivåstigning (4)
- havrett (1)
- havstrømmer (1)
- Hertha (skip) (1)
- historie (1)
- holocene (1)
- hvalfangere (11)
- hvalfangst (6)
- hydrogeologi (1)
- hydrologi (1)
- Ice sheet (1)
- Ice Shelf (1)
- IGY 1957-58 (1)
- innlandsis (10)
- innsjøer (1)
- internasjonal (1)
- internasjonal samarbeid (1)
- is (1)
- isberg (1)
- isbre (1)
- isbreer (3)
- isbrem (2)
- issfjell (1)
- isshelf (4)
- isstrøm (2)
- jord (1)
- jordmagnetiske målinger (1)
- jordmagnetisme (1)
- Kapp Adare (10)
- kart (2)
- kartlegging (6)
- kjemi (3)
- klimaendringer (11)
- klimamodeller (2)
- klimatologi (5)
- konferanse (4)
- kongress (2)
- kontinentalmargin (2)
- kontinentalsokkel (1)
- kryosfæren (1)
- langhalekreps (1)
- Last Glacial Maximum (1)
- litosfæren (1)
- M/V Polarsirkel (1)
- magnetostratigrafi (1)
- magnetotelluriske eksperimenter (1)
- magnetotelluriske målinger (1)
- marin biologi (3)
- marin geofysikk (3)
- marin geologi (4)
- marin økologi (1)
- maringeologi (2)
- Maudheimekspedisjonen (7)
- menneskelig påvirkning (1)
- meteorologi (11)
- mikrobielle organismer (1)
- mikrobiologi (1)
- miljøendringer (1)
- mineraler (3)
- mineralogi (7)
- Modelling (1)
- mylonitter (1)
- NARE 1976/77 (6)
- NARE 1978/79 (2)
- NARE 1984/85 (5)
- NARE 1989/90 (5)
- NARE 1991/92 (1)
- NARE 1992/93 (1)
- NARE 1996/97 (3)
- NARE ekspedisjoner (3)
- NAX (1)
- NBSAE 1949-52 (8)
- Nordmenn (1)
- Norge (1)
- Norsk-britisk-svenske antarktisekspedisjon (8)
- Norsk Polarinstitutt (2)
- Norvegia ekspedisjonen (2)
- Norvegia ekspedisjoner (2)
- Norwegian Antarctic Expedition 1968-69 (1)
- NSBX 1949-52 (9)
- nunataker (5)
- observasjoner (1)
- Odd I (1)
- oppdagelsesreiser (20)
- ornitologi (3)
- oseanografi (15)
- overflatesnø (1)
- overvintring (8)
- paleobiologi (1)
- paleobotanikk (1)
- paleogeografi (4)
- paleoglasiologi (1)
- paleoklimatologi (8)
- paleolimnologi (1)
- paleomagnetisme (2)
- paleontologi (9)
- paleoøkologi (1)
- paleoseanografi (2)
- permafrost (3)
- Peter I. Øy (5)
- petrografi (10)
- petrologi (17)
- polarekspedisjoner (6)
- polarområdene (10)
- polarpolitikk (1)
- radioaktivitet (1)
- Radiocarbon dating (1)
- ressurser (3)
- Roald Amundsen (1)
- Rosshavet (5)
- satellitt bilder (1)
- Scotiahavet (1)
- Sea level (1)
- sedimenter (2)
- sedimentologi (3)
- seismologi (5)
- selfangst (5)
- Seymourøya (1)
- sjøis (1)
- snø (1)
- snø akkumulasjon (1)
- Sørishavet (28)
- Southern Cross (8)
- stabile isotoper (3)
- stratigrafi (8)
- subglasial innsjø (1)
- svaneøgler (1)
- Sydpolen (4)
- Sydpolsekspedisjonen (1)
- symposium (6)
- tektonikk (10)
- termokronologi (2)
- Thorshavn ekspedisjon (1)
- tidevann (1)
- tidevannsmålinger (1)
- topografi (8)
- Troll forskningsstasjon (2)
- tungmetaller (1)
- turisme (1)
- vannmasser (1)
- vannvirvler (1)
- Vestantarktis (4)
- Victoria Land (7)
- vitenskap (1)
- vulkaner (9)
- vulkanologi (1)
- Weddellhavet (17)
- zoologi (13)
Resource type
- Book (17)
- Book Section (39)
- Conference Paper (14)
- Document (7)
- Journal Article (127)
- Manuscript (1)
- Report (4)
- Thesis (3)
Publication year
- Between 1800 and 1899 (11)
-
Between 1900 and 1999
(98)
- Between 1900 and 1909 (4)
- Between 1920 and 1929 (2)
- Between 1930 and 1939 (2)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (6)
- Between 1960 and 1969 (11)
- Between 1970 and 1979 (23)
- Between 1980 and 1989 (28)
- Between 1990 and 1999 (19)
-
Between 2000 and 2025
(103)
- Between 2000 and 2009 (36)
- Between 2010 and 2019 (37)
- Between 2020 and 2025 (30)