Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Resource type

Results 1,838 resources

  • There is a growing concern about the ability to produce enough nutritious food to feed the global human population in this century. Environmental conflicts and a limited freshwater supply constrain further developments in agriculture; global fisheries have levelled off, and aquaculture may have to play a more prominent role in supplying human food. Freshwater is important, but it is also a major challenge to cultivate the oceans in an environmentally, economically and energy-friendly way. To support this, a long-term vision must be to derive new sources of feed, primarily taken from outside the human food chain, and to move carnivore production to a lower trophic level. The main aim of this paper is to speculate on how feed supplies can be produced for an expanding aquaculture industry by and beyond 2050 and to establish a roadmap of the actions needed to achieve this. Resources from agriculture, fish meal and fish oil are the major components of pellet fish feeds. All cultured animals take advantage of a certain fraction of fish meal in the feed, and marine carnivores depend on a supply of marine lipids containing highly unsaturated fatty acids (HUFA, with ≥3 double bonds and ≥20 carbon chain length) in the feed. The availability of HUFA is likely the main constraint for developing carnivore aquaculture in the next decades. The availability of fish meal and oil will decrease, and the competition for plant products will increase. New harvested resources are herbivore zooplankton, such as Antarctic krill and red feed, and new produced resources are macroalgae, transgenic higher HUFA-producing plants and bacterial biomass. These products are to a limited extent components of the human food chain, and all these resources will help to move cultured carnivores to lower trophic levels and can thereby increase the production capacity and the sustainability of the production. Mariculture can only become as successful as agriculture in the coming century if carnivores can be produced at around Trophic Level 2, based mainly on plant resources. There is little potential for increasing the traditional fish meal food chain in aquaculture. KEYWORDS: Global aquaculture · Mariculture · Feed resources · Marine lipids · HUFA · Trophic level

  • Determining the present precise location of Amundsen's tent is a function of 1) the precision of Amundsen's navigation in 1911, 2) the flow of ice since then, and 3) the amount of burial by intervening snow fall. These factors are discussed and it is concluded that the best location that can be given for the tent in December 2011 is 89° 58′ 51″ S, 46° 14′ E, and lying 17 m below the present snow surface. The uncertainty in the position is 0.3 km, and is mainly related to uncertainties in the original positioning. It can be concluded with high certainty that the tent lies between 1.8 and 2.5 km from the South Pole.

  • The phytoplankton onset following the spring ice break-up in Adélie Land, East Antarctica, was studied along a short transect, from 400 m off the continent to 5 km offshore, during the austral summer of 2002. Eight days after the ice break-up, some large colonial and solitary diatom cells, known to be associated with land-fast ice and present in downward fluxes, were unable to adapt in ice-free waters, while some other solitary and short-colony forming taxa (e.g., Fragilariopsis curta, F. cylindrus) did develop. Pelagic species were becoming more abundant offshore, replacing the typical sympagic (ice-associated) taxa. Archaeomonad cysts, usually associated with sea ice, were recorded in the surface waters nearshore. Rough weather restricted the data set, but we were able to confirm that some microalgae may be reliable sea-ice indicators and that seeding by sea ice only concerns a few taxa in this coastal area of East Antarctica. Keywords: Ice break-up; phytoplankton; sea-ice signature; East Antarctica

  • Menneskenes historie i Antarktis er ikke mer enn noen hundre år gammel. De viktigste kildene til denne historien er ekspedisjonsberetningene – en omfangsrik litteratur som kan leses på mange måter, også fra et kjønnsperspektiv.

  • The Amundsen Sea Embayment (ASE) drains approximately 35% of the West Antarctic Ice Sheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future ice sheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded ice sheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding line, and iii) seasonal open marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg-rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10–12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation.

  • Sea ice plays a dynamic role in the air-sea exchange of CO2. In addition to abiotic inorganic carbon fluxes, an active microbial community produces and remineralizes organic carbon, which can accumulate in sea ice brines as dissolved organic matter (DOM). In this study, the characteristics of DOM fluorescence in Antarctic sea ice brines from the western Weddell Sea were investigated. Two humic-like components were identified, which were identical to those previously found to accumulate in the deep ocean and represent refractory material. Three amino-acid-like signals were found, one of which was unique to the brines and another that was spectrally very similar to tryptophan and found both in seawater and in brine samples. The tryptophan-like fluorescence in the brines exhibited intensities higher than could be explained by conservative behavior during the freezing of seawater. Its fluorescence was correlated with the accumulation of nitrogen-rich DOM to concentrations up to 900 μmol L−1 as dissolved organic carbon (DOC) and, thus, potentially represented proteins released by ice organisms. A second, nitrogen-poor DOM fraction also accumulated in the brines to concentrations up to 200 μmol L−1 but was not correlated with any of the fluorescence signals identified. Because of the high C:N ratio and lack of fluorescence, this material is thought to represent extracellular polymeric substances, which consist primarily of polysaccharides. The clear grouping of the DOM pool into either proteinaceous or carbohydrate-dominated material indicates that the production and accumulation of these two subpools of DOM in sea ice brines is, to some extent, decoupled.

  • This paper describes a method used to model relative wetness for part of the Antarctic Dry Valleys using Geographic Information Systems (GIS) and remote sensing. The model produces a relative index of liquid water availability using variables that influence the volume and distribution of water. Remote sensing using Moderate Resolution Imaging Spectroradiometer (MODIS) images collected over four years is used to calculate an average index of snow cover and this is combined with other water sources such as glaciers and lakes. This water source model is then used to weight a hydrological flow accumulation model that uses slope derived from Light Detection and Ranging (LIDAR) elevation data. The resulting wetness index is validated using three-dimensional visualization and a comparison with a high-resolution Advanced Land Observing Satellite image that shows drainage channels. This research demonstrates that it is possible to produce a wetness model of Antarctica using data that are becoming widely available. Keywords: GIS; water; Antarctica; remote sensing.

  • We use observations of N2O and mean age to identify realistic transport in models in order to explain their ozone predictions. The results are applied to 15 chemistry climate models (CCMs) participating in the 2010 World Meteorological Organization ozone assessment. Comparison of the observed and simulated N2O, mean age and their compact correlation identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. This process-oriented diagnostic is more useful than mean age alone because it identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. The diagnosed model transport behavior is related to a model's ability to produce realistic lower stratosphere (LS) O3 profiles. Models with the greatest tropical transport problems compare poorly with O3 observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the Stratospheric Processes and their Role in Climate (SPARC) CCMVal Report to explain the range of CCM predictions for the return-to-1980 dates for global (60°S–60°N) and Antarctic column ozone. Antarctic O3 return dates are generally correlated with vortex Cly levels, and vortex Cly is generally correlated with the model's circulation, although model Cl chemistry and conservation problems also have a significant effect on return date. In both regions, models with good LS transport and chemistry produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily broad due to identifiable model deficiencies.

  • The Antarctic Circumpolar Current (ACC) is a crucial component of the global ocean conveyor belt, acting as a zonal link among the major ocean basins but, to some extent, limiting meridional exchange and tending to isolate the ocean south of it from momentum and heat income. In this work we investigate one of the most important mechanisms contributing to the poleward transfer of properties in the Southern Ocean, that is the eddy component of the dynamics. For this particular purpose, observations obtained from near-surface drifters have been used: they represent a very useful data set to analyse the eddy field because of their ability to catch a large number of scales of motion while providing a quasi-synoptic coverage of the investigated area. Estimates of the eddy heat and momentum fluxes are carried out using data taken from the Global Drifter Program databank; they refer to Surface Velocity Program drifter trajectories collected in the area south of 358S between 1995 and 2006. Eddy kinetic energies, variance ellipses, momentum and heat fluxes have been calculated using the pseudo-Eulerian method, showing patterns in good agreement with those present in the literature based on observational and model data, although there are some quantitative differences. The eddy fluxes have been separated into their rotational and divergent portions, the latter being responsible for the meridional transports. The associated zonal and depth-exponentially integrated meridional heat transport exhibits values spanning over a range between -0.4 PW and -1.1 PW in the ACC region, consistent with previous estimates. Keywords: Antarctic Circumpolar Current; eddy fluxes; Global Drifter Program data; Lagrangian oceanography; Helmholtz decomposition.

  • The colonization capacity and demographic structure of populations of Deschampsia antarctica and Colobanthus quitensis were studied in different microhabitats between 10 and 147 m a.s.l. on Livingston Island, South Shetland Islands, near the Spanish Antarctic base Juan Carlos I, in February 2002. At the highest site (147 m a.s.l.), mean temperatures were about 1 ºC lower than at sea level. Both species are less common in inland areas and at the highest altitudes only occur at restricted sites that are frequently snow-free in the early austral summer. The diameters of the largest plants (C. quitensis cushions 7-8 cm ; D. antarctica tufts 10-11 cm) in the populations growing at the highest altitudes (110 and 147 m a.s.l.) suggest that these populations were established about 24-28 years ago. The largest diameter plants (Deschampsia 20 cm; Colobanthus 18 cm) were found at the lowest altitudes on deep soil. The presence of numerous seedlings and young individuals on the periphery of populations established several years ago or at recently colonized sites suggests an active process of expansion. There were more emerged seedlings of C. quitensis than of D. antarctica, but the density of established individuals was higher for D. antarctica, suggesting these species have different demographic strategies. Keywords: Antarctic vascular plants; altitude and habitat effect; colonization; population structure.

  • We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH3CF2CH2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). In situ measurements are from the global monitoring sites of the Advanced Global Atmospheric Gases Experiment (AGAGE), the System for Observations of Halogenated Greenhouse Gases in Europe (SOGE), and Gosan (South Korea). We include the first halocarbon flask sample measurements from the Antarctic research stations King Sejong and Troll. We also present measurements of archived air samples from both hemispheres back to the 1970s. We use a two-dimensional atmospheric transport model to simulate global atmospheric abundances and to estimate global emissions. HFC-365mfc and HFC-245fa first appeared in the atmosphere only ∼1 decade ago; they have grown rapidly to globally averaged dry air mole fractions of 0.53 ppt (in parts per trillion, 10−12) and 1.1 ppt, respectively, by the end of 2010. In contrast, HFC-227ea first appeared in the global atmosphere in the 1980s and has since grown to ∼0.58 ppt. We report the first measurements of HFC-236fa in the atmosphere. This long-lived compound was present in the atmosphere at only 0.074 ppt in 2010. All four substances exhibit yearly growth rates of >8% yr−1 at the end of 2010. We find rapidly increasing emissions for the foam-blowing compounds HFC-365mfc and HFC-245fa starting in ∼2002. After peaking in 2006 (HFC-365mfc: 3.2 kt yr−1, HFC-245fa: 6.5 kt yr−1), emissions began to decline. Our results for these two compounds suggest that recent estimates from long-term projections (to the late 21st century) have strongly overestimated emissions for the early years of the projections (∼2005–2010). Global HFC-227ea and HFC-236fa emissions have grown to average values of 2.4 kt yr−1 and 0.18 kt yr−1 over the 2008–2010 period, respectively.

  • The horizontal wind data from the standard version of Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS) for the years 2006–2008 are analyzed to obtain the global structure and seasonal variability of the semidiurnal tide (SDT) in the mesosphere. The modeled amplitudes and phases of the SDTs at single stations from middle/high northern latitudes are quite similar to those observed by radars. The primary nonmigrating tides identified in both the meridional wind and zonal wind semidiurnal spectra at 88 km include the westward propagating wave numbers s = 1 (SW1), 3 (SW3), 4 (SW4), 6 (SW6), the standing s = 0 (S0), and the eastward propagating s = 2 (SE2). The migrating SDT (SW2) amplitude maxima usually occur at 40°N–60°N during December–February and August–September, and also at 40°S–60°S in April–May, with the dominance of (2, 4) during October–April and (2, 3) and (2, 5) dominance for other months. The CMAM-DAS is quite successful in reproducing the dominance of SW1 in the Antarctic summer mesosphere. The modeled SW1 shows very good overall agreement in both amplitude and phase with wind measurements from UARS High Resolution Doppler Imager and Wind Imaging Interferometer (UARS-HRDI/WINDII) and from TIMED Doppler Interferometer (TIDI). The CMAM-DAS analyses for SW3, SW4, SW6, and S0 are also in reasonable agreement with those determined from the HRDI/WINDII or TIDI wind measurements. This work provides further evidence for the tidal forcing from below.

  • The latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Southern Ocean from six different data sets are inter-compared for the period 1988- 2000. The six data sets include three satellite-based products, namely, the second version of the Goddard Satellite-Based Surface Turbulent Fluxes data set (GSSTF-2), the third version of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3) and the Japanese Ocean Fluxes Data Sets with Use of Remote Sensing Observations (J-OFURO); two global reanalysis products, namely, the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 data set (NCEP-2) and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis data set (ERA-40); and the Objectively Analyzed Air-Sea Fluxes for the Global Oceans data set (OAFlux). All these products reveal a similar pattern in the averaged flux fields. The zonal mean LHF fields all exhibit a continuous increase equatorward. With an exception of HOAPS-3, the zonal mean SHF fields display a minimum value near 50°S, increasing both pole- and equatorward. The differences in the standard deviation for LHF are larger among the six data products than the differences for SHF. Over the regions where the surface fluxes are significantly influenced by the Antarctic Oscillation and the Pacific-South American teleconnection, the values and distributions of both LHF and SHF are consistent among the six products. It was found that the spatial patterns of the standard deviations and trends of LHF and SHF can be explained primarily by sea-air specific humidity and temperature differences; wind speed plays a minor role. Keywords: Latent heat flux; sensible heat flux; Southern Ocean.

  • This study investigates systematically the intraseasonal variability of surface air temperature over Antarctica by applying empirical orthogonal function (EOF) analysis to the National Centers for Environmental Prediction, US Department of Energy, Reanalysis 2 data set for the period of 1979 through 2007. The results reveal the existence of two major intraseasonal oscillations of surface temperature with periods of 26 - 30 days and 14 days during the Antarctic winter season in the region south of 60°S. The first EOF mode shows a nearly uniform spatial pattern in Antarctica and the Southern Ocean associated with the Antarctic Oscillation. The mode-1 intraseasonal variability of the surface temperature leads that of upper atmosphere by one day with the largest correlation at 300-hPa level geopotential heights. The intraseasonal variability of the mode-1 EOF is closely related to the variations of surface net longwave radiation the total cloud cover over Antarctica. The other major EOF modes reveal the existence of eastward propagating phases over the Southern Ocean and marginal region in Antarctica. The leading two propagating modes respond to Pacific-South American modes. Meridional winds induced by the wave train from the tropics have a direct influence on the surface air temperature over the Southern Ocean and the marginal region of the Antarctic continent. Keywords: Antarctic climate, surface air temperature, intraseasonal variability, Antarctic Oscillation.

  • As part of the US-AMLR program in January-February of 2006, 99 stations in the South Shetland Islands-Antarctic Peninsula region were sampled to understand the variability in hydrographic and biological properties related to the abundance and distribution of krill in this area. Concentrations of dissolved iron (DFe) and total acid-leachable iron (TaLFe) were measured in the upper 150 m at 16 of these stations (both coastal and pelagic waters) to better resolve the factors limiting primary production in this area and in downstream waters of the Scotia Sea. The concentrations of DFe and TaLFe in the upper mixed layer (UML) were relatively high in Weddell Sea Shelf Waters (~0.6 nM and 15 nM, respectively) and low in Drake Passage waters (~0.2 nM and 0.9 nM, respectively). In the Bransfield Strait, representing a mixture of waters from the Weddell Sea and the Antarctic Circumpolar Current (ACC), concentrations of DFe were ~0.4 nM and of TaLFe ~1.7 nM. The highest concentrations of DFe and TaLFe in the UML were found at shallow coastal stations close to Livingston Island (~1.6 nM and 100 nM, respectively). The ratio of TaLFe:DFe varied with the distance to land: ~45 at the shallow coastal stations, ~15 in the high-salinity waters of Bransfield Strait, and ~4 in ACC waters. Concentrations of DFe increased slightly with depth in the water column, while that of TaLFe did not show any consistent trend with depth. Our Fe data are discussed in regard to the hydrography and water circulation patterns in the study area, and with the hypothesis that the relatively high rates of primary production in the central regions of the Scotia Sea are partially sustained by natural iron enrichment resulting from a northeasterly flow of iron-rich coastal waters originating in the South Shetland Islands-Antarctic Peninsula region.

  • The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

Last update from database: 3/1/25, 3:17 AM (UTC)

Explore

Topic

Resource type

Publication year

Online resource