Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Topic

Results 114 resources

  • There is a growing concern about the ability to produce enough nutritious food to feed the global human population in this century. Environmental conflicts and a limited freshwater supply constrain further developments in agriculture; global fisheries have levelled off, and aquaculture may have to play a more prominent role in supplying human food. Freshwater is important, but it is also a major challenge to cultivate the oceans in an environmentally, economically and energy-friendly way. To support this, a long-term vision must be to derive new sources of feed, primarily taken from outside the human food chain, and to move carnivore production to a lower trophic level. The main aim of this paper is to speculate on how feed supplies can be produced for an expanding aquaculture industry by and beyond 2050 and to establish a roadmap of the actions needed to achieve this. Resources from agriculture, fish meal and fish oil are the major components of pellet fish feeds. All cultured animals take advantage of a certain fraction of fish meal in the feed, and marine carnivores depend on a supply of marine lipids containing highly unsaturated fatty acids (HUFA, with ≥3 double bonds and ≥20 carbon chain length) in the feed. The availability of HUFA is likely the main constraint for developing carnivore aquaculture in the next decades. The availability of fish meal and oil will decrease, and the competition for plant products will increase. New harvested resources are herbivore zooplankton, such as Antarctic krill and red feed, and new produced resources are macroalgae, transgenic higher HUFA-producing plants and bacterial biomass. These products are to a limited extent components of the human food chain, and all these resources will help to move cultured carnivores to lower trophic levels and can thereby increase the production capacity and the sustainability of the production. Mariculture can only become as successful as agriculture in the coming century if carnivores can be produced at around Trophic Level 2, based mainly on plant resources. There is little potential for increasing the traditional fish meal food chain in aquaculture. KEYWORDS: Global aquaculture · Mariculture · Feed resources · Marine lipids · HUFA · Trophic level

  • Fishing down the food chain is a controversial issue that demands further exploration. Redfeed is a marine species located on the second to last level on the food web. It is also one of the potential saviors of the aquaculture industry. The role of effective management of this species is of utmost importance to avoid the potential catastrophe associated with its overharvesting. Using a calculation of behavioral effectiveness, a blueprint redfeed regime is compared with the Convention for the Conservation of the Antarctic Marine Living Resources (CCAMLR), an ecosystem-based management regime with the now famous krill as its key species. Though the regimes are similar in nature, their geopolitical differences suggest that a future redfeed regime will be effective even though CCAMLR has not been. Ensuring that the redfeed is not merely incorporated into existing regimes, but is treated separately in an ecosystem-based regime, will alleviate the interplay this future redfeed regime otherwise would encounter.

  • We studied the relationship between the proximity of land and the distribution and swarming characteristics of Antarctic krill across the Scotia Sea in January and February 2003. Krill swarms identified with a Simrad EK60 (38 kHz, 120 kHz) echosounder were grouped into 4 categories according to distance from shoreline: 0 to 50 km, 50 to 100 km, 100 to 200 km and >200 km. Cross-sectional areas of swarms were significantly larger inshore, with a mean value of 120 m<sup>2</sup> in the 0 to 50 km zone compared to <80 m<sup>2</sup> further offshore. The packing concentration of krill within inshore swarms was also significantly greater, with an average density of 95 ind. m<sup>–3</sup> compared to between 24 and 31 ind. m<sup>–3</sup> elsewhere. A large proportion of the biomass was concentrated into a small number of large, dense swarms throughout the survey area, and this trend increased with decreasing distance from shore. The highest median number of swarms per km and krill acoustic biomass per km was found in the 50 to 100 km zone. However, a significantly greater number of large, biomass-rich swarms occurred in the 0 to 50 km zone compared to all other zones. Swarms in the 0 to 50 km zone were also significantly further apart. The majority of swarms were located in the upper 50 m during the daytime although they were marginally deeper in the night in offshore regions. Krill are likely to move between inshore and offshore environments continuously over their lifetimes. The change in krill behaviour between environments could be a response to local predatory threats over short spatial and temporal scales.

  • This study documents horizontal distribution and demography of Antarctic krill (Euphausia superba) from the Southern Ocean during January–March 2008. The cruise predominantly occurred in CCAMLR Subarea 48.6, where knowledge about the ecosystem is limited. E. superba were not found north of 52°S. The biomass, estimated from trawl catches, was highest (63.09 g/m2) at a station 680 km southeast of Bouvetøya and at two stations 1,400 and 600 km southeast and southwest of Bouvetøya, 54.67 and 61.38 g/m2, respectively. Body length ranged from 19 to 61 mm (N = 8,538), with a mean of 42.0 ± 6.4 mm (SD). The overall sex ratio was 1:1, 46.2% males (13.2% adults and 33.0% subadults), 46.1% females (33.6% adults and 12.5% subadults), while 7.5% were juveniles. Trawl stations dominated by adults were found west and north of Bouvetøya. Stations with high proportions of subadults and juveniles were mainly found southeast of the island. Four cluster groups were differentiated: analyzing data on krill sex proportions, maturity stages, hydrography, nutrients and chlorophyll concentrations. Two groups represented stations located in the northern part of the study area, where E. superba were absent; water temperatures were higher and the nutrient concentrations lower compared to the groups where E. superba were present. This study shows that bathymetric features like the North Weddell Ridge including Bouvetøya are important for concentrating krill probably due to water mass characteristics and advective processes which influence regional krill demography. The southern regions of CCAMLR sector 48.6 are essential for understanding regional krill recruitment and production.

  • The understanding of the role of the pteropods Limacina helicina in the ecosystem has become of greater interest as the debate on ocean acidification and its consequences for calcifying organisms has increased. Four incubation experiments were carried out in January and February 2006 in Terra Nova Bay Polynya (Ross Sea) to identify the faecal pellets (FPs) produced by L. helicina. Mean FP production rates were 6.1 ± 1.3 and 10.9 ± 2.1 pellets day−1 individual−1 in January and February, respectively. FPs produced by L. helicina had an oval shape with a more lengthened side. The identification of L. helicina faeces allowed us to quantify the amounts of L. helicina FPs in the material collected by sediment traps deployed in the same area from 1998 to 2001. We found that L. helicina FPs flux ranged from 71 × 103 FP m−2 year−1 to 362 × 103 FP m−2 year−1 and reach maximum values in March–April every year. The FPs flux of this organism contributed 19% of the particle organic carbon flux. The carbon pump may be modified if the L. helicina population declines as a consequence of the predicted acidification in polar and subpolar waters.

  • Wiebe, P. H., Chu, D., Kaartvedt, S., Hundt, A., Melle, W., Ona, E., and Batta-Lona, P. 2010. The acoustic properties of Salpa thompsoni. – ICES Journal of Marine Science, 67: 583–593.Aggregations of the salp Salpa thompsoni were encountered during the Antarctic krill and ecosystem-studies cruise on the RV “G.O. Sars” from 19 February to 27 March 2008. The salp's in situ target strength (TS), size, number of individuals in aggregate chains, and chain angle of orientation were determined. Shipboard measurements were made of Salpa thompsoni's material properties. Individual aggregates were mostly 45.5–60.6 mm in mean length; relatively rare solitaries were ∼100 mm. Chains ranged from 3 to at least 121 individuals, and in surface waters (&lt;20 m), they showed no preferred angle of orientation. Sound-speed contrast (h) ranged from 1.0060 to 1.0201 and density contrast (g) estimates between 1.0000 and 1.0039. The in situ TS distributions peaked between −75 and −76 dB at 38 kHz, with a secondary peak at approximately −65 dB. TS ranged between −85 and −65 dB at 120 and 200 kHz and peaked around −74 dB. The measured in situ TS of salps reasonably matched the theoretical scattering-model predictions based on multi-individual chains. The backscattering from aggregate salps gives rise to TS values that can be similar to krill and other zooplankton with higher density and sound-speed contrasts.

  • We present the first data on attendance patterns, at-sea movements and diving behaviour of Antarctic fur seals breeding at Bouvetøya (Bouvet Island), Southern Ocean. While other colonies have been extensively studied, this remote and second largest global population remains relatively unknown. Time depth recorders and satellite relay data loggers were deployed on breeding females during the 2000–2001 and 2001–2002 summers. Attendance and foraging patterns were similar to those observed at colonies in the Scotia Sea region where Antarctic krill is the predominant prey. Early to mid-lactation trips ranged within ~100 km of the island, usually towards the west. The dominant direction shifted later in the season and the range also increased markedly to a peak between early February and early March. Solar elevation influenced arrivals and departures from the island, with most departures occurring around sunset. Diurnal variations in diving behaviour were consistent with the vertical migration of krill. Diving frequency was higher at night and diving effort peaked around morning twilight. Afternoon deep diving was common, suggesting that females might target dense daytime krill aggregations between the photic zone and the thermocline. Trip durations increased throughout early to mid-lactation, peaking in late January to early March, before again decreasing towards the end of lactation. Our results illustrate the substantial variability, both between individuals and within individuals over time, that is likely to reflect variations in prey distribution and in the growth requirements of pups. Such variations need to be taken into account when estimating habitat use and resource utilisation in marine top predators.

  • Swarming is a fundamental part of the life of Euphausia superba, yet we still know very little about what drives the considerable variability in swarm shape, size and biomass. We examined swarms across the Scotia Sea in January and February 2003 using a Simrad EK60 (38 and 120kHz) echosounder, concurrent with net sampling. The acoustic data were analysed through applying a swarm-identification algorithm and then filtering out all non-krill targets. The area, length, height, depth, packing-concentration and inter-swarm distance of 4525 swarms was derived by this method. Hierarchical clustering revealed 2 principal swarm types, which differed in both their dimensions and packing-concentrations. Type 1 swarms were generally small (<50m long) and were not very tightly packed (<10ind.m−3), whereas type 2 swarms were an order of magnitude larger and had packing concentrations up to 10 times greater. Further sub-divisions of these types identified small and standard swarms within the type 1 group and large and superswarms within the type 2 group. A minor group (swarm type 3) was also found, containing swarms that were isolated (>100km away from the next swarm). The distribution of swarm types over the survey grid was examined with respect to a number of potential explanatory variables describing both the environment and the internal-state of krill (namely maturity, body length, body condition). Most variables were spatially averaged over scales of ∼100km and so mainly had a mesoscale perspective. The exception was the level of light (photosynthetically active radiation (PAR)) for which measurements were specific to each swarm. A binary logistic model was constructed from four variables found to have significant explanatory power (P<0.05): surface fluorescence, PAR, krill maturity and krill body length. Larger (type 2) swarms were more commonly found during nighttime or when it was overcast during the day, when surface fluorescence was low, and when the krill were small and immature. A strong pattern of diel vertical migration was not observed although the larger and denser swarms tended to occur more often at night than during the day. The vast majority of krill were contained within a minor fraction of the total number of swarms. These krill-rich swarms were more common in areas dominated by small and immature krill. We propose that, at the mesoscale level, the structure of swarms switches from being predominantly large and tightly packed to smaller and more diffuse as krill grow and mature. This pattern is further modulated according to feeding conditions and then level of light.

  • The vertical distribution (0–550 m) of zooplankton biomass, and indices of respiration (electron transfer system [ETS]) and structural growth (aminoacyltRNA synthetases activity [AARS]), were studied in waters off the Antarctic Peninsula during the austral summer of 2000. The dominant species were the copepod Metridia gerlachei and the euphausiid Euphausia superba. We observed a vertical krill/copepod substitution in the water column. The zooplankton biomass in the layer at a depth of 200–500 m was of the same magnitude as the biomass in the layer at a depth of 0–200 m, indicating that biomass in the mesopelagic zone is an important fraction of the total zooplankton in Antarctic waters. The metabolic rates of the zooplankton community were sustained by less than 0.5% of the primary production in the area, suggesting that microplankton or small copepods are the main food source. Neither food availability nor predation seemed to control mesozooplankton biomass. The wide time lag between the abundance peak of the dominant copepod (M. gerlachei) and the phytoplankton bloom is suggested to be the main explanation for the low summer zooplankton biomass observed in these waters.

  • A baseline for persistent organohalogen compound (POC) accumulation in the Antarctic keystone species, Antarctic krill (Euphausia superba) has been established for a 50° longitudinal range of the eastern Antarctic sector. Samples of adult krill, caught from 12 sites distributed between 30° and 80°E (60–70°S), were analysed for >100 organohalogen compounds including chlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated organic compounds and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). Organochlorine pesticides dominated measured krill contaminant burdens with hexachlorobenzene (HCB) as the single most abundant compound quantified. Krill HCB concentrations were comparable to those detected at this trophic level in both the Arctic and temperate northwest Atlantic, lending support for the hypothesis that HCB will approach global equilibrium at a faster rate than other POCs. Para, para′-dichlorodiphenylethene (p,p′-DDE) was detected at notable concentrations. Measurements of DDT and its degradation products provide an important baseline for monitoring the temporal and geographical influence of renewed, DDT usage for malaria-control in affected southern hemisphere countries. In contrast to the Arctic, PCBs did not feature prominently in contaminant burdens of Antarctic krill. The major commercial polybrominated diphenyl ether (PBDE) congeners -99 and -47 were quantified at low background levels with clear concentration spikes observed at around 70°E , in the vicinity of modern, active research stations. The likelihood that local anthropogenic activities are supplementing low PBDE levels, delivered otherwise primarily via long range environmental transport, is discussed. The suspected naturally occurring brominated organic compound, 2,4,6-tribromoanisole (TBA), was a ubiquitous contaminant in all samples whereas the only PCDD/Fs quantifiable were trace levels of octachlorodibenzo-p-dioxin (OCDD) and 1,2,3,4,7,8/1,2,3,4,7,9-hexachlorodibenzofuran (HxCDF). With the aims of; i) Generating a robust and broadly applicable POC auditing platform for the scarcely studied eastern Antarctic sector; ii) Determining the compounds accumulating in Antarctic krill for further toxicity evaluation studies and iii) Establishing a baseline for Antarctic predator exposure to POCs, this study represents one of the most comprehensive reports of POC contamination of the Antarctic food web to date.

  • The annual trend in energy storage in the Antarctic minke whale was examined using catch data from all 18 survey years in the Japanese Whale Research Program (JARPA). Regression analyses clearly showed that blubber thickness, girth and fat weight have been decreasing for nearly 2 decades. The decrease per year is estimated at approximately 0.02 cm for mid-lateral blubber thickness and 17 kg for fat weight, corresponding to 9% for both measurements over the 18-year period. Furthermore, "date", "extent of diatom adhesion", "sex", "body length", "fetus length", "latitude", "age" and "longitude" were all identified as partially independent predictors of blubber thickness. The direct interpretation of this substantial decline in energy storage in terms of food availability is difficult, since no long-term krill abundance series is available. However, an increase in the abundance of krill feeders other than minke whales and a resulting decrease in the krill population must be considered as a likely explanation.

  • En rekelignende skapning i Sørishavet er Kjell Inge Røkkes nye yndling. Den kan nemlig brukes i alt fra slankemidler til fiskefôr. Men vet vi nok om krill til å slippe trålerne løs? Forskningsskipet G.O. Sars har vært på tokt for å finne u mer.

  • Identification of DNA sequence diversity is a powerful means for assessing the species present in environmental samples. The most common molecular strategies for estimating taxonomic composition depend upon PCR with universal primers that amplify an orthologous DNA region from a range of species. The diversity of sequences within a sample that can be detected by universal primers is often compromised by high concentrations of some DNA templates. If the DNA within the sample contains a small number of sequences in relatively high concentrations, then less concentrated sequences are often not amplified because the PCR favours the dominant DNA types. This is a particular problem in molecular diet studies, where predator DNA is often present in great excess of food-derived DNA.

  • This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major differences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice‐crystal matrix or inhabiting the ice–water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many differences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice‐associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are nearly absent from the high Arctic. Life history strategies are variable, although reproductive cycles and life spans are generally longer than those for temperate congeners. Species at both poles tend to be opportunistic feeders and periods of diapause or other reductions in metabolic expenditure are not uncommon.

  • The summer of 1997 was characterized by unusually large amounts of pack ice in the southeastern Weddell Sea, and less than 10% of the area that is commonly ice-free in summer was open. A modest phytoplankton bloom developed in the upper mixed layer in the northernmost area (72°S). The bloom peaked in mid-February with max chlorophyll concentrations of 1.5 μg l−1, and integrated stocks of 55–60 mg m−2. Autotrophic flagellates dominated the biomass (80–90% of the chlorophyll) at first, while diatoms increased relative to flagellates during the bloom. Nutrient deficits, however, indicated that a much larger biomass was produced than was observed. Freezing starting after mid-February probably terminated the bloom, resulting in a pelagic growth season limited in time (less than two months) and space. The sea ice had a distinct brown layer of algae, usually at 1–2 m depth, with average chlorophyll biomass of 10.3 mg m−2. The ice cover exhibited a substantial amount of ridges, with ice algae growing in cavities and other structures, but with lower biomass than in the bands. Ice algae were also found growing on the lower 2 m of the ice shelf (visible at low tide). The overall growth season in the ice lasted several months, and ice algal production may have exceeded pelagic production in the Weddell Sea during the growth season of 1997. Pennate diatoms, like Fragilariopsis curta and F. cylindrus, dominated both in ice and in open water above the pycnocline, while Phaeocystis antarctica dominated in deeper layers and in crack pools. Euphausiids, particularly young stages, were frequently observed grazing on ice algae in ridges and on all sides of the floes, (confirmed by the gut content). Ice algae would thus have served as an ample food supply for the krill in the summer of 1997.

Last update from database: 12/1/25, 3:10 AM (UTC)

Explore

Topic

Resource type

Online resource