Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 344 resources
-
Understanding changes in Antarctic ice shelf basal melting is a major challenge for predicting future sea level. Currently, warm Circumpolar Deep Water surrounding Antarctica has limited access to the Weddell Sea continental shelf; consequently, melt rates at Filchner-Ronne Ice Shelf are low. However, large-scale model projections suggest that changes to the Antarctic Slope Front and the coastal circulation may enhance warm inflows within this century. We use a regional high-resolution ice shelf cavity and ocean circulation model to explore forcing changes that may trigger this regime shift. Our results suggest two necessary conditions for supporting a sustained warm inflow into the Filchner Ice Shelf cavity: (i) an extreme relaxation of the Antarctic Slope Front density gradient and (ii) substantial freshening of the dense shelf water. We also find that the on-shelf transport over the western Weddell Sea shelf is sensitive to the Filchner Trough overflow characteristics.
-
Ice shelves around Antarctica can provide back stress for outlet glaciers and control ice sheet mass loss. They often contain narrow bands of thin ice termed ice shelf channels. Ice shelf channel morphology can be interpreted through surface depressions and exhibits junctions and deflections from flowlines. Using ice flow modeling and radar, we investigate ice shelf channels in the Roi Baudouin Ice Shelf. These are aligned obliquely to the prevailing easterly winds. In the shallow radar stratigraphy, syncline and anticline stacks occur beneath the upwind and downwind side, respectively. The structures are horizontally and vertically coherent, except near an ice shelf channel junction where patterns change structurally with depth. Deeper layers truncate near basal incisions. Using ice flow modeling, we show that the stratigraphy is ∼9 times more sensitive to atmospheric variability than to oceanic variability. This is due to the continual adjustment toward flotation. We propose that syncline-anticline pairs in the shallow stratigraphy are caused by preferential snow deposition on the windward side and wind erosion at the downwind side. This drives downwind deflection of ice shelf channels of several meters per year. The depth variable structures indicate formation of an ice shelf channel junction by basal melting. We conclude that many ice shelf channels are seeded at the grounding line. Their morphology farther seaward is shaped on different length scales by ice dynamics, the ocean, and the atmosphere. These processes act on finer (subkilometer) scales than are captured by most ice, atmosphere, and ocean models, yet the dynamics of ice shelf channels may have broader implications for ice shelf stability.
-
Ice rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.
-
Direct measurements of spatially distributed vertical strain within ice masses are scientifically valuable but challenging to acquire. We use manual marker tracking and automatic cross correlation between two repeat optical televiewer (OPTV) images of an ~100 m-long borehole at Derwael Ice Rise (DIR), Antarctica, to reconstruct discretised, vertical strain rate and velocity at millimetre resolution. The resulting profiles decay with depth, from −0.07 a−1 at the surface to ~−0.002 a−1 towards the base in strain and from −1.3 m a−1 at the surface to ~−0.5 m a−1 towards the base in velocity. Both profiles also show substantial local variability. Three coffee-can markers installed at different depths into adjacent boreholes record consistent strain rates and velocities, although averaged over longer depth ranges and subject to greater uncertainty. Measured strain-rate profiles generally compare closely with output from a 2-D ice-flow model, while the former additionally reveal substantial high-resolution variability. We conclude that repeat OPTV borehole logging represents an effective means of measuring distributed vertical strain at millimetre scale, revealing high-resolution variability along the uppermost ~100 m of DIR, Antarctica.
-
Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propose a model to explain the formation of extensive, coherent blue ice moraine sequences based on the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure ages. GPR transects (100 and 25 MHz) both perpendicular and parallel to moraine ridges at Mount Achernar reveal an internal structure defined by alternating relatively clean ice and steeply dipping debris bands extending to depth, and where visible, to the underlying bedrock surface. Sediment is carried to the surface from depth along these debris bands, and sublimates out of the ice, accumulating over time (>300 ka). The internal pattern of dipping reflectors, combined with increasing surface exposure ages, suggest sequential exposure of the sediment where ice and debris accretes laterally to form the moraine. Subsurface structure varies across the moraine and can be linked to changes in basal entrainment conditions. We speculate that higher concentrations of debris may have been entrained in the ice during colder glacial periods or entrained more proximal to the moraine sequence.
-
The Antarctic ice sheet has been losing mass over past decades through the accelerated flow of its glaciers, conditioned by ocean temperature and bed topography. Glaciers retreating along retrograde slopes (that is, the bed elevation drops in the inland direction) are potentially unstable, while subglacial ridges slow down the glacial retreat. Despite major advances in the mapping of subglacial bed topography, significant sectors of Antarctica remain poorly resolved and critical spatial details are missing. Here we present a novel, high-resolution and physically based description of Antarctic bed topography using mass conservation. Our results reveal previously unknown basal features with major implications for glacier response to climate change. For example, glaciers flowing across the Transantarctic Mountains are protected by broad, stabilizing ridges. Conversely, in the marine basin of Wilkes Land, East Antarctica, we find retrograde slopes along Ninnis and Denman glaciers, with stabilizing slopes beneath Moscow University, Totten and Lambert glacier system, despite corrections in bed elevation of up to 1 km for the latter. This transformative description of bed topography redefines the high- and lower-risk sectors for rapid sea level rise from Antarctica; it will also significantly impact model projections of sea level rise from Antarctica in the coming centuries.
-
We developed a high-performance, multichannel, ultra-wideband radar system for measurements of the base and interior of the East Antarctic Ice Sheet. We designed the radar to be of high power (4000-W peak) yet portable and to be able to operate with 60-MHz bandwidth at a center frequency of 200 MHz, providing high sensitivity and fine vertical resolution relative to current technology. We used the radar to perform extensive measurements as a part of a multinational collaboration. We collected data onboard a tracked vehicle outfitted with an array of high-gain antennas. We sounded 2- to 3-km thick ice near Dome Fuji. Preliminary ice thickness data match those obtained via semicoincident measurements performed with a different surface-based pulse modulated radar system operated during the same field campaign, as well as previous airborne measurements. In addition, we mapped internal reflection horizons with fine vertical resolution from 300 m below the ice surface to ∼100 m above the bed. In this article, we provide a detailed overview of the radar instrument design, implementation, and field measurement setup. We present sample data to illustrate its capabilities and discuss how the data collected with it will be valuable for the assessment of promising drilling sites to recover ice cores that are 0.9–1.5 million years old.
-
The shape of ice shelf cavities are a major source of uncertainty in understanding ice-ocean interactions. This limits assessments of the response of the Antarctic ice sheets to climate change. Here we use vibroseis seismic reflection surveys to map the bathymetry beneath the Ekström Ice Shelf, Dronning Maud Land. The new bathymetry reveals an inland-sloping trough, reaching depths of 1,100 m below sea level, near the current grounding line, which we attribute to erosion by palaeo-ice streams. The trough does not cross-cut the outer parts of the continental shelf. Conductivity-temperature-depth profiles within the ice shelf cavity reveal the presence of cold water at shallower depths and tidal mixing at the ice shelf margins. It is unknown if warm water can access the trough. The new bathymetry is thought to be representative of many ice shelves in Dronning Maud Land, which together regulate the ice loss from a substantial area of East Antarctica.
-
Mass loss from the Antarctic Ice Sheet to the ocean has increased in recent decades, largely because the thinning of its floating ice shelves has allowed the outflow of grounded ice to accelerate. Enhanced basal melting of the ice shelves is thought to be the ultimate driver of change, motivating a recent focus on the processes that control ocean heat transport onto and across the seabed of the Antarctic continental shelf towards the ice. However, the shoreward heat flux typically far exceeds that required to match observed melt rates, suggesting that other critical controls exist. Here we show that the depth-independent (barotropic) component of the heat flow towards an ice shelf is blocked by the marked step shape of the ice front, and that only the depth-varying (baroclinic) component, which is typically much smaller, can enter the sub-ice cavity. Our results arise from direct observations of the Getz Ice Shelf system and laboratory experiments on a rotating platform. A similar blocking of the barotropic component may occur in other areas with comparable ice–bathymetry configurations, which may explain why changes in the density structure of the water column have been found to be a better indicator of basal melt rate variability than the heat transported onto the continental shelf. Representing the step topography of the ice front accurately in models is thus important for simulating ocean heat fluxes and induced melt rates.
-
Dalk Glacier, which has been monitored by CHINARE since 2007, is a calving outlet glacier near the Chinese Zhongshan Station in East Antarctica. Using in situ observational azimuthal data from 2007 to 2012, 67 high-precision spatial intersection points were calculated. Consequently, the ice-flow features of the tongue of Dalk Glacier were explored via ground measurements. The maximum observed ice-flow velocity (IV) was 192.72 m/a, at stake P9. The velocities then decreased with the distance from the central flow line on both sides of the glacier in a cross section. Further analysis showed the following: the velocities of each stake increased annually; the closer to the terminus, the faster the ice flowed; and the ascent ratio of the IVs was approximately 10.67 m/a2 in the main flow area. We also observed seasonal variations in the ice-flow velocities, including a speed-up in January 2009 preceding an ice-calving event. The elevation change measurements at the stakes showed fluctuations along the central flow line, which indicates ice-shelf grounding over a seamount that had not been previously identified.
-
The Getz Ice Shelf is one of the largest sources of fresh water from ice shelf basal melt in Antarctica. We present new observations from three moorings west of Siple Island 2016–2018. All moorings show a persistent flow of modified Circumpolar Deep Water toward the western Getz Ice Shelf. Unmodified Circumpolar Deep Water with temperatures up to 1.5 °C reaches the ice shelf front in frequent episodes. These represent the warmest water observed at any ice shelf front in the Amundsen Sea. Mean currents within the warm bottom layer of 18–20 cm/s imply an advection time scale of 7 days from shelf break to ice shelf front. Zonal wind stress at the shelf break affects heat content at the ice shelf front on weekly to monthly time scales. Our 2-year mooring records also evince that upwelling over the shelf break controls thermocline depth on subannual to annual time scales.
-
The Recovery subglacial basin, with its largest glacier Recovery Glacier, has been identified as potentially the biggest contributor to future sea level rise from East Antarctica. Subglacial lakes along the main trunk have been detected from satellite data, with four giant lakes (Recovery Lakes A, B, C, and D) located at the onset of the fast ice flow (≥15 m/yr) and multiple smaller lakes along the glacier. The presence of subglacial water potentially plays a key role in the control of fast ice flow of Recovery Glacier. We present new insights on the Recovery Lakes from airborne radar data collected in 2013 and 2015. Using an adjusted classification scheme, we show that a single large area consisting of smaller lakes connected by likely saturated sediment, referred to as Lake AB, exists in the originally proposed area of the Recovery Lakes A and B. We estimate that the current size of Lake AB is ∼4,320 km2. Water likely leaks from the western shore of Lake AB lubricating the bed initiating fast ice flow at this location. The difference in the outlines of Lake AB and the Lakes A and B previously derived from surface features suggested that a larger paleolake existed here in the past. From our data, we find Recovery Lake C to be dry; we attribute fast ice flow originating from this area to be due to a topographic step and thus an increase in ice thickness rather than enhanced lubrication at the bed.
-
Fjords on the West Antarctic Peninsula (WAP) serve as sediment traps, preserving histories of glacial sediment supply. Regional warming trends are expected to change sediment supplies, altering water quality, depositional history, and ecosystem drivers. Our ability to assess magnitudes of these changes is limited by sparse data on modern sediment accumulation. Twelve new cores and four existing cores from Andvord Bay were used to characterize variability in sediment accumulation rates. These range from 1.5 to 7.9 mm/year (0.12 to 0.56 g·cm−2·year−1). Spatial differences and a weak down-fjord gradient in rates suggest diverse sediment sources, including from outside the fjord. This data set provides a comprehensive assessment of sedimentation during the past century, indicating little change in rates due to recent WAP warming, and sets a benchmark for assessing climate-related changes in sediment delivery and ecosystem drivers (e.g., burial disturbance) in the fjord over coming decades.
-
Ice-flow fields, including the driving stress, provide important information on the current state and evolution of Antarctic and Greenland ice-sheet dynamics. However, computation of flow fields from continent-scale DEMs requires the use of smoothing functions and scales, the choice of which can be ad hoc. This study evaluates smoothing functions and scales for robust calculations of driving stress from Antarctic DEMs. Our approach compares a variety of filters and scales for their capacity to minimize the residual between predicted and observed flow direction fields. We find that a spatially varying triangular filter with a width of 8–10 ice thicknesses provides the closest match between the observed and predicted flow direction fields. We use the predicted flow direction fields to highlight artefacts in observed Antarctic velocities, demonstrating that comparison of multiple observational data sets has utility for quality control of continent-scale data sets.
-
The East Antarctic Ice Sheet (EAIS) is underlain by a series of low-lying subglacial sedimentary basins. The extent, geology, and basal topography of these sedimentary basins are important boundary conditions governing the dynamics of the overlying ice sheet. This is particularly pertinent for basins close to the grounding line wherein the EAIS is grounded below sea level and therefore potentially vulnerable to rapid retreat. Here we analyze newly acquired airborne geophysical data over the Pensacola-Pole Basin (PPB), a previously unexplored sector of the EAIS. Using a combination of gravity and magnetic and ice-penetrating radar data, we present the first detailed subglacial sedimentary basin model for the PPB. Radar data reveal that the PPB is defined by a topographic depression situated ~500 m below sea level. Gravity and magnetic depth-to-source modeling indicate that the southern part of the basin is underlain by a sedimentary succession 2–3 km thick. This is interpreted as an equivalent of the Beacon Supergroup and associated Ferrar dolerites that are exposed along the margin of East Antarctica. However, we find that similar rocks appear to be largely absent from the northern part of the basin, close to the present-day grounding line. In addition, the eastern margin of the basin is characterized by a major geological boundary and a system of overdeepened subglacial troughs. We suggest that these characteristics of the basin may reflect the behavior of past ice sheets and/or exert an influence on the present-day dynamics of the overlying EAIS.
-
We compared elastic moduli in polar firn derived from diving wave refraction seismic velocity analysis, firn-core density measurements and microstructure modelling based on firn-core data. The seismic data were obtained with a small electrodynamic vibrator source near Kohnen Station, East Antarctica. The analysis of diving waves resulted in velocity–depth profiles for different wave types (P-, SH- and SV-waves). Dynamic elastic moduli of firn were derived by combining P- and S-wave velocities and densities obtained from firn-core measurements. The structural finite-element method (FEM) was used to calculate the components of the elastic tensor from firn microstructure derived from X-ray tomography of firn-core samples at depths of 10, 42, 71 and 99 m, providing static elastic moduli. Shear and bulk moduli range from 0.39 to 2.42 GPa and 0.68 to 2.42 GPa, respectively. The elastic moduli from seismic observations and the structural FEM agree within 8.5% for the deepest achieved values at a depth of 71 m, and are within the uncertainty range. Our observations demonstrate that the elastic moduli of the firn can be consistently obtained from two independent methods which are based on dynamic (seismic) and static (tomography and FEM) observations, respectively, for deeper layers in the firn below ~10 m depth.
-
The buttressing potential of ice shelves is modulated by changes in subshelf melting, in response to changing ocean conditions. We analyze the temporal variability in subshelf melting using an autonomous phase-sensitive radio-echo sounder near the grounding line of the Roi Baudouin Ice Shelf in East Antarctica. When combined with additional oceanographic evidence of seasonal variations in the stratification and the amplification of diurnal tides around the shelf break topography (Gunnerus Bank), the results suggest an intricate mechanism in which topographic waves control the seasonal melt rate variability near the grounding line. This mechanism has not been considered before and has the potential to enhance local melt rates without advecting different water masses. As topographic waves seem to strengthen in a stratified ocean, the freshening of Antarctic surface water, predicted by observations and models, is likely to increase future basal melting in this area.
Explore
Topic
- glasiologi
- AABW (1)
- akkumulasjon (9)
- Amundsenhavet (2)
- Antarctica (2)
- Antarktis (149)
- Antarktistraktaten 1959 (1)
- atmosfæren (2)
- batymetri (3)
- Belgica ekspedisjon (1)
- bentiske organismer (1)
- bibliometri (1)
- biodiversitet (1)
- biogeokjemi (2)
- biografi (1)
- biologi (5)
- biosfære (1)
- blåis (5)
- bølger (2)
- botanikk (1)
- Bouvetøya (4)
- brehylle (10)
- bunnvann (1)
- Carsten Egeberg Borchgrevink (1)
- Cosmogenic isotopes (1)
- Cosmogenic nuclide surface exposure age dating (1)
- database (2)
- Deglaciation (1)
- deglasiasjon (2)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Den Norske Antarktisekspedisjonen 1956-60 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- Det Internasjonale polaråret 2007 (2)
- drivhuseffekt (1)
- Dronning Maud Land (166)
- ekkolodd (1)
- ekspedisjoner (43)
- firnsnø (3)
- fjernanalyse (3)
- fjernmåling (5)
- fjord (1)
- flyfotografering (1)
- forskning (33)
- fugler (1)
- fysisk geografi (4)
- geodesi (7)
- geofysikk (39)
- geografi (8)
- geokjemi (4)
- geologi (33)
- geomorfologi (6)
- Geomorphology (1)
- georadar (2)
- geotermisk strømning (1)
- geovitenskap (6)
- Glacial history (1)
- Glaciation (1)
- glasiokjemi (1)
- global oppvarming (7)
- gravimetri (2)
- havbølger (1)
- havbunnen (5)
- havet (1)
- havis (25)
- havnivå (3)
- havnivåstigning (19)
- havstrømmer (2)
- historie (1)
- holocene (3)
- hvalfangst (1)
- hydrografi (4)
- hydrokjemi (1)
- hydrologi (6)
- Ice sheet (1)
- Ice Shelf (1)
- iceberg calving (1)
- IGY 1957-58 (1)
- innlandsis (70)
- is (11)
- is radar (1)
- isberg (7)
- isbre (6)
- isbreer (36)
- isbrem (21)
- isfjell (12)
- isfront (5)
- isgjennomtrengende (1)
- iskjerner (22)
- iskrystaller (1)
- ismeltvann (1)
- isshelf (69)
- issmelting (2)
- isstrøm (16)
- istykkelse (2)
- jordmagnetiske målinger (1)
- kalv (2)
- kalving (6)
- karbondioksid (1)
- kartlegging (5)
- kartografi (1)
- kjemi (3)
- klima (13)
- klimaendringer (35)
- klimamodeller (6)
- klimatologi (27)
- konferanse (1)
- konferanser (1)
- kongress (1)
- kontinentalsokkel (7)
- kryosfæren (3)
- laboratorieeksperimenter (1)
- Last Glacial Maximum (1)
- lille istiden (1)
- litteratur (1)
- logistikk (2)
- målinger (1)
- marin biologi (4)
- marin geofysikk (2)
- marin geologi (6)
- maringeologi (1)
- marinøkologi (1)
- Maudheim (Antarktis) (1)
- Maudheimekspedisjonen (26)
- metamorfologi (1)
- meteorologi (32)
- miljøendringer (2)
- miljøforskning (1)
- miljøvern (1)
- modellering (1)
- Modelling (1)
- morfologi (5)
- NARE 1976/77 (2)
- NARE 1978/79 (8)
- NARE 1984/85 (3)
- NARE 1989/90 (3)
- NARE 1991/92 (3)
- NARE 1992/93 (6)
- NARE 1993/94 (5)
- NARE 1996/97 (7)
- NARE 1997/98 (2)
- NARE 2000/01 (3)
- NARE ekspedisjoner (3)
- naturressurser (1)
- NAX (1)
- NBSAE 1949-52 (26)
- Norge (1)
- Norsk-britisk-svenske antarktisekspedisjon (26)
- Norsk Polarinstitutt (1)
- Norvegia ekspedisjoner (1)
- Norwegian Antarctic Expedition 1968-69 (1)
- NSBX 1949-52 (27)
- numerisk modellering (1)
- nunataker (3)
- observasjoner (5)
- oppdagelsesreiser (1)
- ornitologi (4)
- oseanografi (36)
- overflateakkumulering (1)
- overvintring (1)
- paleoglasiologi (2)
- paleoklimatologi (11)
- polarekspedisjoner (1)
- polarforskning (4)
- polarimetrisk radar (1)
- polarområdene (17)
- Quaternary (1)
- radar observasjoner (3)
- radarundersøkelse (1)
- radarundersøkelser (1)
- radioaktivitet (1)
- Radiocarbon dating (1)
- satellite altimetri (1)
- satellite bilder (5)
- satellite mikrobølgesensorer (1)
- satellitt (1)
- satellittbilder (5)
- satellitteknologi (1)
- Sea level (1)
- sedimenter (4)
- sedimentologi (5)
- seismisk undersøkelse (1)
- seismologi (9)
- sjøis (3)
- sjøvann (1)
- smelting (12)
- snø (16)
- snø akkumulasjon (1)
- snø radar (1)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (77)
- Sørpolen (1)
- stabile isotoper (3)
- storbreen (1)
- stratigrafi (12)
- subglasial (1)
- subglasial biodiversitet (1)
- subglasial geologi (1)
- subglasial innsjø (8)
- subglasial topografi (1)
- Sydpolen (2)
- symposium (2)
- teknologi (6)
- telemetri (1)
- Thorshavn ekspedisjon (1)
- tidevannsbreen (1)
- tidevannsmålinger (1)
- tidsserieanalyse (1)
- tomografi (1)
- topografi (15)
- transantarktiske ekspedisjoner (2)
- vannmasser (4)
- vitenskap (1)
- Vostoksjøen (1)
- vulkaner (2)
- Weddellhavet (16)
- zoologi (1)
Resource type
- Book (14)
- Book Section (58)
- Conference Paper (2)
- Document (6)
- Journal Article (259)
- Manuscript (1)
- Report (2)
- Thesis (2)
Publication year
-
Between 1900 and 1999
(164)
-
Between 1920 and 1929
(1)
- 1928 (1)
-
Between 1930 and 1939
(1)
- 1933 (1)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (26)
- Between 1960 and 1969 (17)
- Between 1970 and 1979 (19)
- Between 1980 and 1989 (38)
- Between 1990 and 1999 (59)
-
Between 1920 and 1929
(1)
-
Between 2000 and 2025
(180)
- Between 2000 and 2009 (58)
- Between 2010 and 2019 (72)
- Between 2020 and 2025 (50)