Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 1,208 resources

  • Iron(III) photoreduction and the responses of phytoplankton under ultraviolet (UV) and photosynthetically available radiation (PAR) were investigated with the presence of hydroxycarboxylic acid (glucaric acid (GA), a model compound for organic acids excreted by phytoplankton). The incubation experiments were carried out on board using seawater samples collected in the location of the winter ice edge (WIE) and the spring ice edge (SIE) of the Southern Ocean. In this paper, we focus on the results of experiment in WIE. Throughout the experiments, dissolved Fe(II), major nutrients and in vivo fluorescence were monitored regularly. In addition, Chl-a, POC/PON, cell densities of phytoplankton and bacteria, bacterial production, organic peroxide, hydrogen peroxide and total CO2 were measured. The results from the WIE show that iron enrichment had a substantial effect on phytoplankton growth rate. Fe(III) addition in the presence of GA (FeGA) gave higher Fe(II) concentration and higher growth rate of phytoplankton than those in controls. Our results suggest that hydroxycarboxylic acid had a significant chemical and biological impact. The presence of GA influenced iron photochemistry and iron availability to phytoplankton. Phytoplankton growth responses to iron enrichments in incubations under UV and PAR were completely dissimilar. It seems that FeGA addition prominently changes the harmful effect of UV on the phytoplankton population. This study provides preliminary information on how the photoreduction of iron(III) and the phytoplankton growth are affected by iron enrichment in the presence of hydroxycarboxylic acid.

  • The importance of the diatom Fragilariopsis cylindrus (Grunow) Krieger in Helmcke & Krieger in the Arctic and Antarctic is well known. It is used as an indicator of sea ice when the paleoenvironment is being described. It is often among the dominant taxa in different sea ice communities, sometimes making an important contribution to a subsequent phytoplankton growth when released by ice melt. However, it may also dominate phytoplankton blooms in areas never experiencing sea ice. The use of F. cylindrus as an indicator for reconstruction of palaeoceanographic conditions is assessed from literature records. Its potential as an indicator species for sea ice appears to vary from region to region, but it is a good indicator of cold water.

  • The role of iron and light in controlling photosynthate production and allocation in phytoplankton populations of the Atlantic sector of the Southern Ocean was investigated in April–May 1999. The 14C incorporation into five biochemical pools (glucan, amino acids, proteins, lipids and polysaccharides) was measured during iron/light perturbation experiments. The diurnal Chl a-specific rates of carbon incorporation into these pools did not change in response to iron addition, yet were decreased at 20 μmol photons m−2 s−1, an irradiance comparable with the one at 20–45 m in situ depth. This suggests that the low phytoplankton biomass encountered (0.1–0.6 μg Chl a L−1) was mainly caused by light limitation in the deep wind mixed layer (>40 m). Regional differences in Chl a-specific carbon incorporation rates were not found in spite of differences in phytoplankton species composition: at the Antarctic Polar Front, biomass was dominated by a diatom population of Fragilariopsis kerguelensis, whereas smaller cells, including chrysophytes, were relatively more abundant in the Antarctic Circumpolar Current beyond the influence of frontal systems. Because mixing was often in excess of 100 m in the latter region, diatom cells may have been unable to fulfil their characteristically high Fe demand at low average light conditions, and thus became co-limited by both resources. Using a model that describes the 14C incorporation, the consistency was shown between the dynamics in the glucan pool in the field experiments and in laboratory experiments with an Antarctic diatom, Chaetoceros brevis. The glucan respiration rate was almost twice as high during the dark phase as during the light phase, which is consistent with the role of glucan as a reserve supplying energy and carbon skeletons for continued protein synthesis during the night.

  • The climatic features of Antarctic waters are more extreme and constant than in the Arctic. The Antarctic has been isolated and cold longer than the Arctic. The polar ichthyofaunas differ in age, endemism, taxonomy, zoogeographic distinctiveness and physiological tolerance to environmental parameters. The Arctic is the connection between the Antarctic and the temperate-tropical systems. Paradigmatic comparisons of the pathways of adaptive evolution of fish from both poles address the oxygen-transport system and the antifreezes of northern and southern species, (i) Haemoglobin evolution has included adaptations at the biochemical, physiological and molecular levels. Within the study of the molecular bases offish cold adaptation, and taking advantage of the information on haemoglobin amino acid sequence, we analysed the evolutionary history of the ? and ? globins of Antarctic, Arctic and temperate haemoglobins as a basis for reconstructing phylogenetic relationships. In the trees, the constant physico-chemical conditions of the Antarctic waters are matched by clear grouping of globin sequences, whereas the variability typical of the Arctic ecosystem corresponds to high sequence variation, reflected by scattered intermediate positions between the Antarctic and non-Antarctic clades. (ii) Antifreeze (glyco)proteins and peptides allow polar fish to survive at sub-zero temperatures. In Antarctic Notothenioidei the antifreeze gene evolved from a trypsinogen-like serine protease gene. In the Arctic polar cod the genome contains genes which encode nearly identical proteins, but have evolved from a different genomic locus–a case of convergent evolution.

  • Ocean Drilling Program Site 1165 penetrated drift sediments on the East Antarctic continental rise and recovered sediments from a low-energy depositional environment. The sediments are characterized by prominent alternations between a green to greenish-gray diatom-bearing hemipelagic facies and gray to dark gray hemiturbiditic facies. Our investigation of an upper Miocene section, using high-resolution color spectra, multisensor core logs, and X-ray fluorescence scans, reveals that sedimentation changes occur at Milankovitch orbital frequencies of obliquity and precession. We use this finding to derive an astronomical calibrated time scale and to calculate iron mass-accumulation rates, as a proxy for sediment-accumulation rates. Terrigenous iron fluxes change by as much as 100% during each obliquity cycle. This change and an episodic pattern of enhanced ice-rafted debris deposition during times of deglaciation provide evidence for a dynamic and likely wet-based late Miocene East Antarctic Ice Sheet (EAIS) that underwent large size variations at orbital time scales. The dynamic behavior of the EAIS implies that a significant proportion of the variability seen in oxygen isotope records of the late Miocene reflects Antarctic ice-volume changes.

  • In previous work, whaling catch positions were used as a proxy record for the position of the Antarctic sea ice edge and mean sea ice extent greater than the present one spanning 2.8° latitude was postulated to have occurred in the pre-1950s period, compared to extents observed since 1973 from microwave satellite imagery. The previous conclusion of an extended northern latitude for ice extent in the earlier epoch applied only to the January (mid-summer) period. For this summer period, however, there are also possible differences between ship and satellite-derived measurements. Our work showed a consistent summer offset (November– December), with the ship-observed ice edge 1 - 1.5° north of the satellitederived ice edge. We further reexamine the use of whale catch as an ice edge proxy where agreement was claimed between the satellite ice edge (1973–1987) and the ship whale catch positions. This examination shows that, while there may be a linear correlation between ice edge position and whale catch data, the slope of the line deviates from unity and the ice edge is also further north in the whale catch data than in the satellite data for most latitudes. We compare the historical (direct) record and modern satellite maps of ice edge position accounting for these differences in ship and satellite observations. This comparison shows that only regional perturbations took place earlier, without significant deviations in the mean ice extents, from the pre-1950s to the post-1970s. This conclusion contradicts that previously stated from the analysis of whale catch data that indicated Antarctic sea ice extent changes were circumpolar rather than regional in nature between the two periods.

  • A new stegocephalid (Amphipoda) species, Metandania tordi n.sp, is described, belonging to the subfamily Andaniexinae Berge & Vader 2001. The new species is the first record of the genus in the southern hemisphere. In addition, a morphological trait, previously not figured nor described within this family, is presented: a process proximally on the inner anterior surface of the fourth coxa. This locking-process is interpreted, and named accordingly, to enhance a relative stabilization of the third and fourth coxae. A brief comparison of the morphology of the fourth coxa between all five stegocephalid subfamilies is presented.

  • Sea ice is a remarkable component of the global climate system. It can form over up to about 10 % of the global ocean area, and creates an insulating barrier between the relatively warm seawater and the cold atmosphere, allowing a temperature difference that may be tens of degrees over only a couple of meters. It reduces evaporation from the ocean, leading to a drier atmosphere than would otherwise exist. Sea ice modifies the radiation balance at the Earth’s surface because it supports snow (the most reflective of the Earth’s natural surfaces, with an albedo of up to approximately 0.8), where otherwise there would be seawater (the least reflective, with an albedo of about 0.07). As sea ice forms it excludes brine, deepening the ocean surface mixed layer and influencing the formation of deep and bottom water. As it melts, it releases relatively fresh water, stratifying the upper layers of the ocean. Through these processes sea ice exerts an enormous influence on the atmospheric and oceanic circulation in cold regions and indeed the climate of the rest of the globe.

  • A hindcast simulation of the Arctic and Antarctic sea ice variability during 1955–2001 has been performed with a global, coarse resolution ice–ocean model driven by the National Centers for Environmental Prediction / National Center for Atmospheric Research reanalysis daily surface air temperatures and winds. Both the mean state and variability of the ice packs over the satellite observing period are reasonably well reproduced by the model. Over the 47-year period, the simulated ice area (defined as the total ice-covered oceanic area) in each hemisphere experiences large decadal variability together with a decreasing trend of ~1 % per decade. In the Southern Hemisphere, this trend is mostly caused by an abrupt retreat of the ice cover during the second half of the 1970s and the beginning of the 1980s. The modelled ice volume also exhibits pronounced decadal variability, especially in the Northern Hemisphere. Besides these fluctuations, we detected a downward trend in Arctic ice volume of 1.8 % per decade and an upward trend in Antarctic ice volume of 1.5 % per decade. However, caution must be exercised when interpreting these trends because of the shortness of the simulation and the strong decadal variations. Furthermore, sensitivity experiments have revealed that the trend in Antarctic ice volume is model-dependent.

  • A new coupled atmosphere–ocean–sea ice model has been developed, named the Bergen Climate Model (BCM). It consists of the atmospheric model ARPEGE/IFS, together with a global version of the ocean model MICOM including a dynamic–thermodynamic sea ice model. The coupling between the two models uses the OASIS software package. The new model concept is described, and results from a 300-year control integration is evaluated against observational data. In BCM, both the atmosphere and the ocean components use grids which can be irregular and have non-matching coastlines. Much effort has been put into the development of optimal interpolation schemes between the models, in particular the non-trivial problem of flux conservation in the coastal areas. A flux adjustment technique has been applied to the heat and fresh-water fluxes. There is, however, a weak drift in global mean sea-surface temperature (SST) and sea-surface salinity (SSS) of respectively 0.1 °C and 0.02 psu per century. The model gives a realistic simulation of the radiation balance at the top-of-the-atmosphere, and the net surface fluxes of longwave, shortwave, and turbulent heat fluxes are within observed values. Both global and total zonal means of cloud cover and precipitation are fairly close to observations, and errors are mainly related to the strength and positioning of the Hadley cell. The mean sea-level pressure (SLP) is well simulated, and both the mean state and the interannual standard deviation show realistic features. The SST field is several degrees too cold in the equatorial upwelling area in the Pacific, and about 1 °C too warm along the eastern margins of the oceans, and in the polar regions. The deviation from Levitus salinity is typically 0.1 psu – 0.4 psu, with a tendency for positive anomalies in the Northern Hemisphere, and negative in the Southern Hemisphere. The sea-ice distribution is realistic, but with too thin ice in the Arctic Ocean and too small ice coverage in the Southern Ocean. These model deficiencies have a strong influence on the surface air temperatures in these regions. Horizontal oceanic mass transports are in the lower range of those observed. The strength of the meridional overturning in the Atlantic is 18 Sv. An analysis of the large-scale variability in the model climate reveals realistic El Niño – Southern Oscillation (ENSO) and North Atlantic–Arctic Oscillation (NAO/AO) characteristics in the SLP and surface temperatures, including spatial patterns, frequencies, and strength. While the NAO/AO spectrum is white in SLP and red in temperature, the ENSO spectrum shows an energy maximum near 3 years.

  • The distribution of calcareous dinoflagellates has been analysed for the Maastrichtian–Miocene interval of Ocean Drilling Project Hole 689B (Maud Rise, Weddell Sea). The investigation thus represents a primary evaluation of the long-term evolution in high-latitude calcareous dinoflagellate assemblages during the transition from a relatively warm Late Cretaceous to a cold Neogene climate. Major assemblage changes during this interval occurred in characteristic steps: (1) an increase in relative abundance of tangentially structured species – particularly Operculodinella operculata – at the Cretaceous/Tertiary boundary; (2) a diversity decrease and several first and last appearances across the Middle–Late Eocene boundary, possibly attributed to increased climate cooling; (3) a diversity decrease associated with the dominance of Calciodinellum levantinum in the late Early Oligocene; (4) the reappearance and dominance of Pirumella edgarii in the Early Miocene, probably reflecting a warming trend; (5) monogeneric assemblages dominated by Caracomia spp. denoting strong Middle Miocene cooling. The results not only extend the biogeographic ranges of many taxa into the Antarctic region, but also indicate that the evolution of high-latitude calcareous dinoflagellate assemblages parallels the changing environmental conditions in the course of the Cenozoic climate transition. Therefore, calcareous dinoflagellates contribute to our understanding of the biotic effects associated with palaeoenvironmental changes and might possess the potential for reconstructing past conditions. The flora in the core includes one new taxon: Caracomia arctica forma spinosa Hildebrand-Habel and Streng, forma nov. Additionally, two new combinations are proposed: Fuettererella deflandrei (Kamptner, 1956) Hildebrand-Habel and Streng, comb. nov. and Fuettererella flora (Fütterer, 1990) Hildebrand-Habel and Streng, comb. nov.

  • Sediment textural properties and total organic carbon (TOC) contents of three sediment cores from Maxwell Bay, King George Island, West Antarctica, record changes in Holocene glaciomarine sedimentary environments. The lower sedimentary unit is mostly composed of TOC-poor diamictons, indicating advanced coastal glacier margins and rapid iceberg discharge in proximal glaciomarine settings with limited productivity and meltwater supply. Fine-grained, TOC-rich sediments in the upper lithologic unit suggest more open water and warm conditions, leading to enhanced biological productivity due to increased nutrient-rich meltwater supply into the bay. The relationship between TOC and total sulfur (TS) indicates that the additional sulfur within the sediment has not originated from in situ pyrite formation under the reducing condition, but rather may be attributed to the detrital supply of sand-sized pyrite from the hydrothermal-origin, quartz-pyrite rocks widely distributed in King George Island. The evolution of bottom-water hydrography after deglaciation was recorded in the benthic foraminiferal stable-isotopic composition, corroborated by the TOC and lithologic changes. The Ø18O values indicate that bottom-water in Maxwell Bay was probably mixed gradually with intruding 18O-rich seawater from Bransfield Strait. In addition, the Ø13C values reflect a spatial variability in the carbon isotope distribution in Maxwell Bay, depending on marine productivity as well as terrestrial carbon fluxes by meltwater discharge. The distinct lithologic transition, dated to approximately 8000 yr BP (uncorrected) and characterized by textural and geochemical contrasts, highlights the postglacial environmental change by a major coastal glacier retreat in Maxwell Bay.

  • We use new data from the southern Weddell Sea continental shelf to describe water mass conversion processes in a formation region for cold and dense precursors of Antarctic Bottom Water. The cruises took place in early 1995, 1998, and 1999, and the time series obtained from moored instruments were up to 30 months in length, starting in 1995. We obtained new bathymetric data that greatly improve our definition of the Ronne Depression, which is now shown to be limited to the southwestern continental shelf and so cannot act as a conduit to northward flow from Ronne Ice Front. Large-scale intrusions of Modified Warm Deep Water (MWDW) onto the continental shelf occur along much of the shelf break, although there is only one location where the MWDW extends as far south as Ronne Ice Front. High-Salinity Shelf Water (HSSW) produced during the winter months dominates the continental shelf in the west. During summer, Ice Shelf Water (ISW) exits the subice cavity on the eastern side of the Ronne Depression, flows northwest along the ice front, and reenters the cavity at the ice front's western limit. During winter the ISW is not observed in the Ronne Depression north of the ice front. The flow of HSSW into the subice cavity via the Ronne Depression is estimated to be 0.9 ± 0.3 Sv. When combined with inflows along the remainder of Ronne Ice Front (reported elsewhere), sufficient heat is transported beneath the ice shelf to power an average basal melt rate of 0.34 ± 0.1 m yr−1.

  • Longlines that sink fast reduce the time available to seabirds to attack baited hooks and are important in efforts to minimise seabird by-catch in longline fisheries. We measured sink rates in still seawater of longlines commonly used in the world’s demersal fisheries. Lines with integrated weight (lead cores) sank two to three times faster (45–52cm/s) than conventional (unweighted) lines. Conventional 9mm diameter lines made from polyester sank at 23cm/s compared to 18cm/s for 9mm Silver lines (blend of polyester, polyethylene and polypropylene). Samples of lines set by hand in still water sank significantly faster than longlines set from a fishing vessel, presumably because of the effect of the sea swell and upwellings from the propeller on the line set from the vessel.

  • We present mid-Pliocene (4.3–2.6 Ma) benthic stable oxygen and carbon isotope data from Ocean Drilling Program Site 1092 (ODP Leg 177) drilled in the sub-Antarctic sector of the Southern Ocean. The results are compared with the stable isotope results from nearby Site 704 (ODP Leg 114). Oxygen isotope data show that minimum values are about 0.5‰ less than those of the Holocene, which is consistent with the results from Site 704, indicating only minor deglaciation of Antarctica during the studied interval. Oxygen isotope data from both Site 1092 and Site 704 are slightly higher relative to Pacific values during several intervals which could be related to the contribution of warm, saline North Atlantic Deep Water (NADW). Comparisons of benthic carbon isotope gradients between sites located in the North Atlantic, sub-Antarctic sector of the Southern Ocean, and Pacific indicate that at times, the gradient between the Southern Ocean and the Pacific evolved differently than the Atlantic–Pacific gradient. This suggests that variations in NADW strength alone might not be responsible for the observed carbon isotope values in the Southern Ocean.

Last update from database: 12/1/25, 3:10 AM (UTC)

Explore

Topic

Resource type

Publication year

Online resource