Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 122 resources
-
There is a paucity of information on the foraging ecology, especially individual use of sea-ice features and icebergs, over the non-breeding season in many seabird species. Using geolocators and stable isotopes, we defined the movements, distribution and diet of adult Antarctic petrels Thalassoica antarctica from the largest known breeding colony, the inland Svarthamaren, Antarctica. More specifically, we examined how sea-ice concentration and free-drifting icebergs affect the distribution of Antarctic petrels. After breeding, birds moved north to the marginal ice zone (MIZ) in the Weddell sector of the Southern Ocean, following its northward extension during freeze-up in April, and they wintered there in April–August. There, the birds stayed predominantly out of the water (60–80% of the time) suggesting they use icebergs as platforms to stand on and/or to rest. Feather δ15N values encompassed one full trophic level, indicating that birds fed on various proportions of crustaceans and fish/squid, most likely Antarctic krill Euphausia superba and the myctophid fish Electrona antarctica and/or the squid Psychroteuthis glacialis. Birds showed strong affinity for the open waters of the northern boundary of the MIZ, an important iceberg transit area, which offers roosting opportunities and rich prey fields. The strong association of Antarctic petrels with sea-ice cycle and icebergs suggests the species can serve, year-round, as a sentinel of environmental changes for this remote region.
-
Antarctic sea ice can incorporate high levels of iron (Fe) during its formation and has been suggested as an important source of this essential micronutrient to Southern Ocean surface waters during the melt season. Over the last decade, a limited number of studies have quantified the Fe pool in Antarctic sea ice, with a focus on late winter and spring. Here we study the distribution of operationally defined dissolved and particulate Fe from nine sites sampled between Wilkes Land and King George V Land during austral summer 2016/2017. Results point toward a net heterotrophic sea-ice community, consistent with the observed nitrate limitation (<1 μM). We postulate that the recycling of the high particulate Fe pool in summer sea ice supplies sufficient (∼3 nM) levels of dissolved Fe to sustain ice algal growth. The remineralization of particulate Fe is likely favored by high concentrations of exopolysaccharides (113–16,290 μg xeq L−1) which can serve as a hotspot for bacterial activity. Finally, results indicate a potential relationship between glacial meltwater discharged from the Moscow University Ice Shelf and the occurrence of Fe-rich (∼4.3 μM) platelet ice in its vicinity. As climate change is expected to result in enhanced Fe-rich glacial discharge and changes in summer sea-ice extent and quality, the processes influencing Fe distribution in sea ice that persists into summer need to be better constrained.
-
In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice-covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal-ocean supercooling to melting of Antarctic ice shelves and surface-induced supercooling in the seasonal sea-ice region to wintertime sea-ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water-mass structure in the polar ocean.
-
To investigate the role of tides in Weddell Sea ocean-ice shelf melt interactions, and resulting consequences for ocean properties and sea ice interactions, we develop a regional ocean-sea ice model configuration, with time-varying ocean boundary and atmospheric forcing, including the deep open ocean (at 2.5–4 km horizontal resolution), the southwestern continental shelf (≈2.5 km), and the adjacent cavities of eastern Weddell, Larsen, and Filchner-Ronne ice shelves (FRIS, 1.5–2.5 km). Simulated circulation, water mass, and ice shelf melt properties compare overall well with available open ocean and cavity observational knowledge. Tides are shown to enhance the kinetic energy of the time-varying flow in contact with the ice shelves, thereby increasing melt. This dynamically driven impact of tides on net melting is to almost 90% compensated by cooling through the meltwater that is produced but not quickly exported from regions of melting in the Weddell Sea cold-cavity regime. The resulting systematic tide-driven enhancement of both produced meltwater and its refreezing on ascending branches of, especially the FRIS, cavity circulation acts to increase net ice shelf melting (by 50% in respect to the state without tides, ≈50 Gt yr−1). In addition, tides also increase the melt-induced FRIS cavity circulation, and the meltwater export by the FRIS outflow. Simulations suggest attendant changes on the open-ocean southwestern continental shelf, characterized by overall freshening and small year-round sea ice thickening, as well as in the deep southwestern Weddell Sea in the form of a marked freshening of newly formed bottom waters.
-
The Filchner-Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open-ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow if Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.
-
The Southern Ocean is chronically undersampled due to its remoteness, harsh environment, and sea ice cover. Ocean circulation models yield significant insight into key processes and to some extent obviate the dearth of data; however, they often underestimate surface mixed layer depth (MLD), with consequences for surface water-column temperature, salinity, and nutrient concentration. In this study, a coupled circulation and sea ice model was implemented for the region adjacent to the West Antarctic Peninsula, a climatically sensitive region which has exhibited decadal trends towards higher ocean temperature, shorter sea ice season, and increasing glacial freshwater input, overlain by strong interannual variability. Hindcast simulations were conducted with different air-ice drag coefficients and Langmuir circulation parameterizations to determine the impact of these factors on MLD. Including Langmuir circulation deepened the surface mixed layer, with the deepening being more pronounced in the shelf and slope regions. Optimal selection of an air-ice drag coefficient also increased modeled MLD by similar amounts and had a larger impact in improving the reliability of the simulated MLD interannual variability. This study highlights the importance of sea ice volume and redistribution to correctly reproduce the physics of the underlying ocean, and the potential of appropriately parameterizing Langmuir circulation to help correct for biases towards shallow MLD in the Southern Ocean. The model also reproduces observed freshwater patterns in the West Antarctic Peninsula during late summer and suggests that areas of intense summertime sea ice melt can still show net annual freezing due to high sea ice formation during the winter.
-
Abstract Individual heterogeneity in diet and foraging behaviour is common in wild animal populations, and can be a strong determinant of how populations respond to environmental changes. Within populations, variation in foraging behaviour and the occurrence of individual tactics in relation to resources distribution can help explain differences in individual fitness, and ultimately identify important factors affecting population dynamics. We examined how foraging behaviour and habitat during the breeding period related to the physiological state of a long-ranging seabird adapted to sea ice, the Antarctic petrel Thalassoica antarctica. Firstly, using GPS tracking and state-switching movement modelling (hidden Markov models) on 124 individual birds, we tested for the occurrence of distinct foraging tactics within our study population. Our results highlight a large variation in the movement and foraging behaviour of a very mobile seabird, and delineate distinct foraging tactics along a gradient from foraging in dense pack ice to foraging in open water. Secondly, we investigated the effects of these foraging tactics on individual state at return from a foraging trip. We combined movement data with morphometric and physiological measurements of a suite of plasma metabolites that provided a general picture of a bird's individual state. Foraging in denser sea ice was associated with lower gain in body mass during brooding, as well as lower level of energy acquisition (plasma triacylglycerol) during both brooding and incubation. We found no clear relationship between the foraging tactic in relation to sea ice and the energetic stress (changes in plasma corticosterone), energetic balance (β-hydroxybutyrate) or trophic level (δ15N). However, a shorter foraging range was related to both the energetic balance (positively) and the trophic level (negatively). Our results highlight a diverse range of foraging tactics in relation to sea ice in Antarctic petrels. While the various foraging tactics do not seem to strongly alter energetic balance, they may affect other aspects of Antarctic petrels' physiology. Future changes in sea-ice habitats can thus be expected to have an impact on the individual state of seabirds such as Antarctic petrels, which could ultimately affect their population dynamics. Nonetheless, strong individual heterogeneity in the use of sea-ice habitats by a typical pagophilic species might strengthen its resilience to environmental changes and in particular to forecasted sea-ice loss. A free Plain Language Summary can be found within the Supporting Information of this article.
-
An object-based method for automatic iceberg detection has been applied to Advanced Synthetic Aperture Radar images in the Amundsen Sea Embayment (ASE), Antarctica. The images were acquired between 1 January 2006 and 8 April 2012 under varying meteorological, oceanographic and sea-ice conditions. During this time period, the icebergs were counted (average 1370 ± 50) and their surface area was estimated (average 1537.5 km2). The average surface area was about 2.5 times larger than the annual calved area (620 km2), indicating that the average iceberg age in the ASE is about 2.5 years, which was confirmed by observed residence times based on drift tracks. Most of the ASE icebergs were less than 1500 m long, and almost 90% of them were smaller than 2 km2. The proportion of small- and medium-sized icebergs (84.4%) was significantly higher than in the open ocean, where large icebergs (>10 km2) account for nearly the whole iceberg surface area. The opposite was true for the freshly calved icebergs in the ASE. The data indicate that the creation of icebergs in the ASE is dominated by steady small- to medium-scale calving from ice shelves fringing the embayment. In addition, rare calving events of giant icebergs occur on a decadal timescale. There is also some import of icebergs from the Bellingshausen Sea further east along the coast, in particular after large calving events there.
-
In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron-rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas.
-
The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
-
Surface heat fluxes from four atmospheric reanalyses in the Southern Ocean are evaluated using air–sea measurements obtained from the Aurora Australis during off-winter seasons in 2010–12. The icebreaker tracked between Hobart, Tasmania (ca. 42°S), and the Antarctic continent, providing in situ benchmarks for the surface energy budget change in the Subantarctic Southern Ocean (58–42°S) and the eastern Antarctic marginal ice zone (MIZ, 68–58°S). We find that the reanalyses show a high-level agreement among themselves, but this agreement reflects a universal bias, not a “truth.” Downward shortwave radiation (SW↓) is overestimated (warm biased) and downward longwave radiation (LW↓) is underestimated (cold biased), an indication that the cloud amount in all models is too low. The ocean surface in both regimes shows a heat gain from the atmosphere when averaged over the seven months (October–April). However, the ocean heat gain in reanalyses is overestimated by 10–36 W m−2 (80–220%) in the MIZ but underestimated by 6–20 W m−2 (7–25%) in the Subantarctic. The biases in SW↓ and LW↓ cancel out each other in the MIZ, causing the surface heat budget to be dictated by the underestimation bias in sensible heat loss. These reanalyses biases affect the surface energy budget in the Southern Ocean by meaningfully affecting the timing of the seasonal transition from net heat gain to net heat loss at the surface and the relative strength of SW↓ at different regimes in summer, when the length-of-day effect can lead to increased SW↓ at high latitudes.
-
Abstract Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest-known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea-ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter-annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea-ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.
-
Microorganisms confined to annual sea ice in the Southern Ocean are exposed to highly variable oxygen and carbonate chemistry dynamics because of the seasonal increase in biomass and limited exchange with the underlying water column. For sea-ice algae, physiological stress is likely to be exacerbated when the ice melts; however, variation in carbonate speciation has rarely been monitored during this important state-transition. Using pulse amplitude modulated fluorometry (Imaging-PAM, Walz), we documented in situ changes in the maximum quantum yield of photosystem II ( F v / F m ) of sea-ice algae melting out into seawater with initial pH values ranging from 7.66 to 6.39. Although the process of ice-melt elevated seawater pH by 0.2–0.55 units, we observed a decrease in F v / F m between 0.02 and 0.06 for each unit drop in pH during real-time fluorescence imaging. These results are considered preliminary but provide context for including carbonate chemistry monitoring in the design of future sea ice state-transition experiments. Imaging-PAM is a reliable technology for determining F v / F m , but is of limited use for obtaining additional photosynthetic parameters when imaging melting ice.
-
The multi-temporal scales of two physical characteristics (areas and occurrence time) of the Ross Sea Polynya (RSP) in Antarctica were analysed using a sea-ice concentration data set (1979–2014) derived from the Scanning Multichannel Microwave Radiometer, the Special Sensor Microwave Imager and Sensor Microwave Imager Sounder. Then, the Ensemble Empirical Mode Decomposition (EEMD) was applied to the data sets to decompose signals into finite numbers of intrinsic mode functions and a residual mode: long time trend. This approach allowed us to understand the long-term variability of the RSP area and occurrence in response to atmospheric forcing through teleconnections between low and high latitudes by comparing the Nino3.4 and Southern Annular Mode (SAM) indices. The nonlinear trend of the RSP areas derived from the EEMD residual had an upward trending shift in the early 1990s and was fairly consistent with the nonlinear trend of Nino3.4. However, the trend of RSP occurrence time progressively increased and had a significant effect on the long time scale. The trend of the RSP area is significantly correlated (+0.98) with the ratio of the trend of the meridional to zonal wind components related with the nonlinearity of Nino3.4, suggesting that meridional wind stress dominated the changes of the polynya area in the Ross Sea. In addition, the nonlinear trends between the SAM and RSP occurrence time show a strong positive correlation, contributing to the earlier onset of polynya expansion and delayed connection with the open ocean owing to enhanced southerly winds.
-
In polar seas, the seasonal melting of ice triggers the development of an open-waterecosystem characterized by short-lived algal blooms, the grazing and development of zooplank-ton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of icemelt generates temporal variability in the development of these events across the habitat, offeringa natural framework to assess how foraging marine predators respond to the spring phenology.We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarcticawith synopticremote-sensing data on sea ice and chlorophyll ato test how the development of melting ice andprimary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passagetime revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. Theseareas changed position or disappeared within 10 to 30 d and showed no spatial consistency amongyears. Generalized additive model (GAM) analyses suggested that the presence of foraging areaswas related to the time since ice melt. Antarctic petrels concentrated their search effort in meltingareas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found nosignificant relationship between search effort and chlorophyll aconcentration. We suggest thatthese foraging patterns were related to the vertical distribution and profitability of the main prey,the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in theSouthern Ocean shapes the development of a highly patchy and elusive food web, underscoringthe importance of flexible foraging strategies among top predators. KEY WORDS: Area-restricted search · Euphausia superba· Marginal ice zone · Phytoplanktonbiomass · Procellariiformes · Sea ice dynamics · Southern Ocean · Thalassoica antarctica
-
We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as “signal carriers,” transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.
-
The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS) to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL) profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO), a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO’s high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice. Keywords: Remotely piloted aircraft systems; unmanned aerial vehicles; Weddell Sea; polar meteorology; Antarctic; boundary layer meteorology.
-
Locally grounded features in ice shelves, called ice rises and rumples, play a key role buttressing discharge from the Antarctic Ice Sheet and regulating its contribution to sea level. Ice rises typically rise several hundreds of meters above the surrounding ice shelf; shelf flow is diverted around them. On the other hand, shelf ice flows across ice rumples, which typically rise only a few tens of meters above the ice shelf. Ice rises contain rich histories of deglaciation and climate that extend back over timescales ranging from a few millennia to beyond the last glacial maximum. Numerical model results have shown that the buttressing effects of ice rises and rumples are significant, but details of processes and how they evolve remain poorly understood. Fundamental information about the conditions and processes that cause transitions between floating ice shelves, ice rises and ice rumples is needed in order to assess their impact on ice-sheet behavior. Targeted high-resolution observational data are needed to evaluate and improve prognostic numerical models and parameterizations of the effects of small-scale pinning points on grounding-zone dynamics.
-
In this study, we analyze a large dataset of seismic signals, recorded by station TROLL in Dronning Maud Land, Antarctica. The signals, recorded in April–December 2012, came from sources near the edge of the ice shelves, at distances of 230–500 km from TROLL. The sources, which moved westward with time, could be associated with four large, tabular icebergs, drifting between 15° E and 8° W. Combining the seismological data with information from satellite remote sensing, we find that one-third of the signals can be attributed to individual icebergs. The trajectories of three of the associated icebergs are known through iceberg-tracking databases, whereas the fourth, a fragment of one of the other three, is untracked, and only scarce information is available from satellite imagery. The observed seismic signals exhibit a wide variety of frequency characteristics, from unstructured episodes to occurrences of iceberg harmonic tremor. Although we are not able to determine the exact cause of the signals, we classify them into five classes on a phenomenological basis. This study demonstrates the potential of regional seismic networks for iceberg monitoring as supplementary resources to information obtained with remote-sensing technologies.
-
Assessments of benthic coastal seawater carbonate chemistry in Antarctica are sparse. The studies have generally been short in duration, during the austral spring/summer, under sea ice, or offshore in ice-free water. Herein we present multi-frequency measurements for seawater collected from the shallow coastal benthos on a weekly schedule over one year (May 2012–May 2013), daily schedule over three months (March–May 2013) and semidiurnal schedule over five weeks (March–April 2013). A notable pH increase (max pH = 8.62) occurred in the late austral spring/summer (November–December 2012), coinciding with sea-ice break-out and subsequent increase in primary productivity. We detected semidiurnal variation in seawater pH with a maximum variation of 0.13 pH units during the day and 0.11 pH units during the night. Daily variation in pH is likely related to biological activity, consistent with previous research. We calculated the variation in dissolved inorganic carbon (DIC) over each seawater measurement frequency, focusing on the primary DIC drivers in the Palmer Station region. From this, we estimated net biological activity and found it accounts for the greatest variations in DIC. Our seasonal data suggest that this coastal region tends to act as a carbon dioxide source during austral winter months and as a strong sink during the summer. These data characterize present-day seawater carbonate chemistry and the extent to which these measures vary over multiple time scales. This information will inform future experiments designed to evaluate the vulnerability of coastal benthic Antarctic marine organisms to ocean acidification. Keywords: Antarctica; aragonite; calcite; pH; seawater chemistry; total alkalinity.
Explore
Topic
- havis
- AABW (3)
- alger (10)
- amfipoder (1)
- Amundsenhavet (3)
- analyser (1)
- Antarktis (19)
- atmosfæren (6)
- atmosfæriske gasser (1)
- bakterier (2)
- batymetri (4)
- biodiversitet (3)
- biogeokjemi (5)
- biologi (7)
- biomasse (4)
- bioovervåking (1)
- botanikk (1)
- Bouvetøya (2)
- brehylle (5)
- bunnvannet (3)
- copepoder (1)
- crustacea (1)
- Den lille istid (1)
- diatomeer (5)
- drivhuseffekten (1)
- drivis (3)
- Dronning Maud Land (7)
- dyreliv (2)
- ekspedisjoner (4)
- endringer (1)
- evaluering (1)
- fauna (1)
- fenologi (1)
- fiskeri (1)
- fjernmåling (3)
- fjernstyrte flysystemer (1)
- flora (1)
- fluorescens (1)
- fôring (2)
- forskning (6)
- forurensning (2)
- fotosyntese (1)
- fysikk (1)
- fysiologi (1)
- fysisk oseanografi (1)
- fytoplankton (12)
- gassutveksling (2)
- geofysikk (9)
- geokjemi (2)
- geologi (5)
- geolokalisering (1)
- geostrofisk (1)
- glasiologi (24)
- global oppvarming (1)
- globale klimasystemet (1)
- havbruksnæring (1)
- havnivå (2)
- havnivåstigning (1)
- havstrømmer (5)
- historisk (1)
- hvaler (2)
- hvalfangere (1)
- hvalfangst (8)
- hvalkokerier (5)
- hydrografi (11)
- hydrokjemi (1)
- hydrologi (1)
- innlandsis (2)
- is (4)
- isberg (6)
- isbreer (5)
- isbrem (8)
- isdrift (3)
- isfjell (7)
- iskant (1)
- iskjerner (1)
- issfjell (1)
- isshelf (14)
- kalving (1)
- karbonatkjemi (1)
- karbondioksid (3)
- kartlegging (2)
- kiselalger (1)
- kjemi (3)
- kjemisk (1)
- kjemiske analyser (2)
- klima (5)
- klimaendringer (21)
- klimaforskning (1)
- klimagasser (1)
- klimamodeller (5)
- klimatologi (14)
- knølhvaler (1)
- konferanse (1)
- konferanser (1)
- kongress (1)
- kontinentalsokkel (3)
- krill (2)
- kyststrøm (1)
- laboratorieeksperimenter (1)
- landfast is (1)
- langmuirsirkulasjon (1)
- målinger (2)
- marin biologi (22)
- marin geofysikk (3)
- marin geologi (2)
- marin økologi (1)
- marin zoologi (1)
- marine økosystemer (4)
- menneskelig påvirkning (1)
- meteorologi (15)
- mikrobielle organismer (1)
- mikrobiologi (2)
- mikropaleontologi (2)
- mikroplast (1)
- miljø (1)
- miljøendringer (3)
- miljøgifter (1)
- miljøsatellitter (1)
- NARE 1978/79 (2)
- NARE 1992/93 (1)
- NARE 2000/01 (2)
- NARE ekspedisjoner (2)
- næring (1)
- observasjoner (5)
- økofysiologi (3)
- økologi (5)
- økosystemer (3)
- ornitologi (2)
- oseanografi (43)
- ozonhull (1)
- ozonlaget (1)
- paleoklimatologi (1)
- paleontologi (1)
- paleoøkologi (1)
- pelagisk (1)
- permafrost (1)
- petreller (3)
- plankton (3)
- planteplankton (2)
- planter (1)
- polarområdene (20)
- polynja (4)
- populærvitenskap (1)
- primærproduksjon (1)
- protozo (1)
- pyknoklin (1)
- Rosshavet (5)
- satellite bilder (5)
- satellite mikrobølgesensorer (1)
- satellitt (1)
- sedimenter (1)
- sedimentologi (1)
- seler (4)
- sjøelefanter (1)
- sjøfugler (2)
- sjøis (79)
- sjøpattedyr (1)
- sjøvann (6)
- smelting (4)
- snø (1)
- snøsmelting (1)
- Sørishavet (108)
- sørlig oscillasjon (1)
- sporgass (1)
- stabile isotoper (1)
- superkjøling (1)
- sympagisk økologi (1)
- symposium (1)
- teknologi (2)
- tidevann (1)
- ubemannede luftfartøyer (1)
- vannmasser (5)
- vannressurser (1)
- vannvirvler (2)
- Vestantarktis (1)
- Weddellhavet (30)
- zoologi (4)
- zooplankton (2)
Resource type
- Book (8)
- Book Section (8)
- Document (2)
- Journal Article (99)
- Report (5)
Publication year
-
Between 1900 and 1999
(40)
-
Between 1920 and 1929
(1)
- 1928 (1)
- Between 1930 and 1939 (7)
-
Between 1960 and 1969
(1)
- 1962 (1)
- Between 1970 and 1979 (9)
- Between 1980 and 1989 (9)
- Between 1990 and 1999 (13)
-
Between 1920 and 1929
(1)
- Between 2000 and 2025 (82)