Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 344 resources
-
Ice streams regulate most ice mass loss in Antarctica. Determining ice stream response to warmer conditions during the Pliocene could provide insights into their future behaviour, but this is hindered by a poor representation of subglacial topography in ice-sheet models. We address this limitation using a high-resolution model for Dronning Maud Land (East Antarctica). We show that contrary to dynamic thinning of the region’s ice streams following ice-shelf collapse, the largest ice stream, Jutulstraumen, thickens by 700 m despite lying on a retrograde bed slope. We attribute this counterintuitive thickening to a shallower Pliocene subglacial topography and inherent high lateral stresses at its flux gate. These conditions constrict ice drainage and, combined with increased snowfall, allow ice accumulation upstream. Similar stress balances and increased precipitation projections occur across 27% of present-day East Antarctica, and understanding how lateral stresses regulate ice-stream discharge is necessary for accurately assessing Antarctica’s future sea-level rise contribution.
-
At any one time 130 000 icebergs are afloat in the Southern Ocean; 97% of these are too small to be registered in current satellite-based databases, yet the melting of these small icebergs provides a major input to the Southern Ocean. We use a unique set of visual size observations of 53 000 icebergs in the South Atlantic Ocean, the SCAR International Iceberg Database, to derive average iceberg dissolution rates. Fracture into two parts is the dominant dissolution process for tabular icebergs, with an average half-life of 30 days for icebergs <4 km length and 60 days for larger icebergs. Complete shatter producing many icebergs <1 km length is rare. A side attrition rate of 0.23 m d−1 combined with drift speed of 6 km d−1, or any proportional change in both numbers fits the observed changes in iceberg distribution. The largest injection into the Southern Ocean of fresh water and any iceberg-transported material takes place in a ~2.3 × 10⁶ km2 zone extending east-northeast from the Antarctic Peninsula to the Greenwich meridian. The iceberg contribution to salinities and temperatures, with maximum contribution north of the Weddell Sea, differs in some regions, from those indicated by tracking large icebergs.
-
In 1981, the Scientific Committee on Antarctic Research endorsed a program for ship-based collection of Antarctic iceberg data, to be coordinated by the Norwegian Polar Institute (NPI). From the austral summers 1982/1983 to 1997/1998, icebergs were recorded from most, and up to 2009/10 by fewer research vessels. The NPI database makes up 80% of the SCAR International Iceberg Database presented here, the remainder being Australian National Antarctic Research Expedition observations. The database contains positions of 374 142 icebergs resulting from 34 662 observations. Within these, 298 235 icebergs are classified into different size categories. The ship-based data are particularly useful because they include systematic observations of smaller icebergs not covered by current satellite-based datasets. Here, we assess regional and seasonal variations in iceberg density and total quantities, we identify drift patterns and exit zones from the continent, and we discuss iceberg dissolution rates and calving rates. There are significant differences in the extent of icebergs observed over the 30 plus years of observations, but much of these can be ascribed to differences in observation density and location. In the summer, Antarctic icebergs >10 m in length number ~130 000 of which 1000 are found north of the Southern Ocean boundary.
-
We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq; %) and intensity (MPI-int; K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23%–35%, MPI-int 1.2–2.1 K), lowest (2%–3%, <0 K) for the Ronne–Filchner and Ross ice shelves, and around 10%–24% and 0.6–1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3–4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties.
-
Observations of ocean-driven grounding-line retreat in the Amundsen Sea Embayment in Antarctica raise the question of an imminent collapse of the West Antarctic Ice Sheet. Here we analyse the committed evolution of Antarctic grounding lines under the present-day climate. To this aim, we first calibrate a sub-shelf melt parameterization, which is derived from an ocean box model, with observed and modelled melt sensitivities to ocean temperature changes, making it suitable for present-day simulations and future sea level projections. Using the new calibration, we run an ensemble of historical simulations from 1850 to 2015 with a state-of-the-art ice sheet model to create model instances of possible present-day ice sheet configurations. Then, we extend the simulations for another 10 000 years to investigate their evolution under constant present-day climate forcing and bathymetry. We test for reversibility of grounding-line movement in the case that large-scale retreat occurs. In the Amundsen Sea Embayment we find irreversible retreat of the Thwaites Glacier for all our parameter combinations and irreversible retreat of the Pine Island Glacier for some admissible parameter combinations. Importantly, an irreversible collapse in the Amundsen Sea Embayment sector is initiated at the earliest between 300 and 500 years in our simulations and is not inevitable yet – as also shown in our companion paper (Part 1, Hill et al., 2023). In other words, the region has not tipped yet. With the assumption of constant present-day climate, the collapse evolves on millennial timescales, with a maximum rate of 0.9 mm a−1 sea-level-equivalent ice volume loss. The contribution to sea level by 2300 is limited to 8 cm with a maximum rate of 0.4 mm a−1 sea-level-equivalent ice volume loss. Furthermore, when allowing ice shelves to regrow to their present geometry, we find that large-scale grounding-line retreat into marine basins upstream of the Filchner–Ronne Ice Shelf and the western Siple Coast is reversible. Other grounding lines remain close to their current positions in all configurations under present-day climate.
-
The Antarctic Ice Sheet represents the largest source of uncertainty in future sea level rise projections, with a contribution to sea level by 2100 ranging from −5 to 43 cm of sea level equivalent under high carbon emission scenarios estimated by the recent Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). ISMIP6 highlighted the different behaviors of the East and West Antarctic ice sheets, as well as the possible role of increased surface mass balance in offsetting the dynamic ice loss in response to changing oceanic conditions in ice shelf cavities. However, the detailed contribution of individual glaciers, as well as the partitioning of uncertainty associated with this ensemble, have not yet been investigated. Here, we analyze the ISMIP6 results for high carbon emission scenarios, focusing on key glaciers around the Antarctic Ice Sheet, and we quantify their projected dynamic mass loss, defined here as mass loss through increased ice discharge into the ocean in response to changing oceanic conditions. We highlight glaciers contributing the most to sea level rise, as well as their vulnerability to changes in oceanic conditions. We then investigate the different sources of uncertainty and their relative role in projections, for the entire continent and for key individual glaciers. We show that, in addition to Thwaites and Pine Island glaciers in West Antarctica, Totten and Moscow University glaciers in East Antarctica present comparable future dynamic mass loss and high sensitivity to ice shelf basal melt. The overall uncertainty in additional dynamic mass loss in response to changing oceanic conditions, compared to a scenario with constant oceanic conditions, is dominated by the choice of ice sheet model, accounting for 52 % of the total uncertainty of the Antarctic dynamic mass loss in 2100. Its relative role for the most dynamic glaciers varies between 14 % for MacAyeal and Whillans ice streams and 56 % for Pine Island Glacier at the end of the century. The uncertainty associated with the choice of climate model increases over time and reaches 13 % of the uncertainty by 2100 for the Antarctic Ice Sheet but varies between 4 % for Thwaites Glacier and 53 % for Whillans Ice Stream. The uncertainty associated with the ice–climate interaction, which captures different treatments of oceanic forcings such as the choice of melt parameterization, its calibration, and simulated ice shelf geometries, accounts for 22 % of the uncertainty at the ice sheet scale but reaches 36 % and 39 % for Institute Ice Stream and Thwaites Glacier, respectively, by 2100. Overall, this study helps inform future research by highlighting the sectors of the ice sheet most vulnerable to oceanic warming over the 21st century and by quantifying the main sources of uncertainty.
-
Abstract Topographic variability beneath ice sheets regulates ice flow, basal melting, refreezing processes, and meltwater drainage. The preservation of old ice layers and basal ice stratigraphy is sensitive to these subglacial processes, and Dome Fuji, inland East Antarctica, is one of the few regions where 1.5-Ma old ice can be preserved for investigating a major climatic change that occurred in the mid-Pleistocene. We used stochastic simulation methods and radar data to generate an ensemble of simulated bed topography with the continuous and realistic roughness necessary to assess basal conditions. Ensemble analysis reveals the magnitude and spatial distribution of topographic uncertainty, facilitating uncertainty-constrained assessments of subglacial drainage and topographic adjustments to geothermal heat flow (GHF). We find that topographic variability can lead to widespread local GHF variations of ±20% of the background value, which aggregate to raise the regional value and suggest previously underestimated distributions and rates of basal melting. We also find that survey profile spacing has an increasing influence on topographic uncertainty for rougher bed, deriving an empirical relationship that could guide future survey planning based on uncertainty tolerance.
-
Crossing a key atmospheric CO2 threshold triggered a fundamental global climate reorganisation ~34 million years ago (Ma) establishing permanent Antarctic ice sheets. Curiously, a more dramatic CO2 decline (~800–400 ppm by the Early Oligocene(~27 Ma)), postdates initial ice sheet expansion but the mechanisms driving this later, rapid drop in atmospheric carbon during the early Oligocene remains elusive and controversial. Here we use marine seismic reflection and borehole data to reveal an unprecedented accumulation of early Oligocene strata (up to 2.2 km thick over 1500 × 500 km) with a major biogenic component in the Australian Southern Ocean. High-resolution ocean simulations demonstrate that a tectonically-driven, one-off reorganisation of ocean currents, caused a unique period where current instability coincided with high nutrient input from the Antarctic continent. This unrepeated and short-lived environment favoured extreme bioproductivity and enhanced sediment burial. The size and rapid accumulation of this sediment package potentially holds ~1.067 × 1015 kg of the ‘missing carbon’ sequestered during the decline from an Eocene high CO2-world to a mid-Oligocene medium CO2-world, highlighting the exceptional role of the Southern Ocean in modulating long-term climate.
-
The East Antarctic Ice Sheet stores a vast amount of freshwater, which makes it the single largest potential contributor to future sea-level rise. However, the lack of well-constrained geological records of past ice sheet changes impedes model validation, hampers mass balance estimates, and inhibits examination of ice loss mechanisms. Here we identify rapid ice-sheet thinning in coastal Dronning Maud Land from Early to Middle Holocene (9000–5000 years ago) using a deglacial chronology based on in situ cosmogenic nuclide surface exposure dates from central Dronning Maud Land, in concert with numerical simulations of regional and continental ice-sheet evolution. Regional sea-level changes reproduced from our refined ice-load history show a highstand at 9000–8000 years ago. We propose that sea-level rise and a concomitant influx of warmer Circumpolar Deep Water triggered ice shelf breakup via the marine ice sheet instability mechanism, which led to rapid thinning of upstream coastal ice sheet sectors.
-
We investigated mass balance changes over five ice rises in the last few decades near Fimbul and Nivl ice shelves in central Dronning Maud Land. We use the Input-Output Method constrained using field-based geophysical measurements conducted during the austral summers of 2012–14 over three ice rises near the Fimbul Ice Shelf. Further, we use satellite altimetry data (ICESat, ICESat-2, and CryoSat-2) to estimate geodetic mass balance over all five ice rises in recent decades. Both field- and satellite-based estimates show that until 2010, three out of five ice rises were thickening (0.4–0.2 m<sub>ieq</sub> a<sup>−1</sup>) while two were close to balance. However, over the last decade, the ice rises thickening previously started to thin (−0.2–−0.6 m<sub>ieq</sub> a<sup>−1</sup>) while the other two remained close to balance. Much of this variability is likely associated with regional surface mass balance trends, with each ice rise exhibiting its characteristics depending on its local glaciological settings.
-
The coastal Droning Maud Land in East Antarctica is characterized by small ice shelves with numbers of promontories and locally grounded isles, both called ice rises. These ice rises are typically dome-shaped and surface elevations are hundreds of meters above the surrounding ice shelves, which cause strong orographic effects on surface mass balance (SMB). We conducted shallow ice-penetrating radar sounding to visualize firn stratigraphy in the top 35 m over ~400 km of profiles across the Nivlisen Ice Shelf, and in a grid pattern over two adjacent ice rises (Djupranen and Leningradkollen). We tracked six reflectors (isochrones) and dated them using two ice cores taken at the ice rise summits, from which SMB over six periods in the past three decades was retrieved. The overall SMB pattern across the ice shelf remained similar for all periods; however, the eastwest contrast in SMB varies by a factor of 1.5–2 between the Leningradkollen and Djupranen grounding lines. The SMB patterns over the ice rises are more varied owing to complex interactions between topography, snowfall and wind. We use our results to evaluate the regional climate model RACMO2.3p2 in terms of the spatial SMB distribution and temporal changes over the ice shelf and ice rises at regional scale.
-
Changes in ocean-driven basal melting have a key influence on the stability of ice shelves, the mass loss from the ice sheet, ocean circulation, and global sea level rise. Coupled ice sheet–ocean models play a critical role in understanding future ice sheet evolution and examining the processes governing ice sheet responses to basal melting. However, as a new approach, coupled ice sheet–ocean systems come with new challenges, and the impacts of solutions implemented to date have not been investigated. An emergent feature in several contributing coupled models to the 1st Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1) was a time-varying oscillation in basal melt rates. Here, we use a recently developed coupling framework, FISOC (v1.1), to connect the modified ocean model ROMSIceShelf (v1.0) and ice sheet model Elmer/Ice (v9.0), to investigate the origin and implications of the feature and, more generally, the impact of coupled modeling strategies on the simulated basal melt in an idealized ice shelf cavity based on the MISOMIP setup. We found the spatial-averaged basal melt rates (3.56 m yr−1) oscillated with an amplitude ∼0.7 m yr−1 and approximate period of ∼6 years between year 30 and 100 depending on the experimental design. The melt oscillations emerged in the coupled system and the standalone ocean model using a prescribed change of cavity geometry. We found that the oscillation feature is closely related to the discretized ungrounding of the ice sheet, exposing new ocean, and is likely strengthened by a combination of positive buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and the frequent coupling of ice geometry and ocean evolution. Sensitivity tests demonstrate that the oscillation feature is always present, regardless of the choice of coupling interval, vertical resolution in the ocean model, tracer properties of cells ungrounded by the retreating ice sheet, or the dependency of friction velocities to the vertical resolution. However, the amplitude, phase, and sub-cycle variability of the oscillation varied significantly across the different configurations. We were unable to ultimately determine whether the feature arises purely due to numerical issues (related to discretization) or a compounding of multiple physical processes amplifying a numerical artifact. We suggest a pathway and choices of physical parameters to help other efforts understand the coupled ice sheet–ocean system using numerical models.
-
Floating ice shelves are the Achilles’ heel of the Antarctic Ice Sheet. They limit Antarctica’s contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
-
Fe(II) is more soluble and bioavailable than Fe(III) species, therefore the investigation of their relative abundance and redox processes is relevant to better assess the supply of bioavailable iron to the ocean and its impact on marine productivity. In this context, we present a discrete chemiluminescence-based method for the determination of Fe(II) in firn matrices. The method was applied on discrete samples from a snow pit collected at Dome C (DC, Antarctica) and on a shallow firn core from the Holtedahlfonna glacier (HDF, Svalbard), providing the first Fe(II) record from both Antarctica and Svalbard. The method showed low detection limits (0.006 ng g−1 for DC and 0.003 ng g−1 for the HDF) and a precision ranging from 3% to 20% RSD. Fe(II) concentrations ranged between the LoD and 0.077 ng g−1 and between the LoD and 0.300 ng g−1 for the Antarctic and Arctic samples, respectively. The Fe(II) contribution with respect to the total dissolved Fe was comparable in both sites accounting, on average, for 5% and 3%, respectively. We found that Fe(II) correctly identified the Pinatubo/Cerro Hudson eruption in the DC record, demonstrating its reliability as volcanic tracer, while, on the HDF core, we provided the first preliminary insight on the processes that might influence Fe speciation in firn matrices (i.e. organic ligands and pH influences).
-
The land ice contribution to global mean sea level rise has not yet been predicted using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models, but primarily used previous-generation scenarios and climate models, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.
-
Curvilinear channels on the surface of an ice shelf indicate the presence of large channels at the base. Modelling studies have shown that where these surface expressions intersect the grounding line, they coincide with the likely outflow of subglacial water. An understanding of the initiation and the ice–ocean evolution of the basal channels is required to understand the present behaviour and future dynamics of ice sheets and ice shelves. Here, we present focused active seismic and radar surveys of a basal channel, ∼950 m wide and ∼200 m high, and its upstream continuation beneath Support Force Glacier, which feeds into the Filchner Ice Shelf, West Antarctica. Immediately seaward from the grounding line, below the basal channel, the seismic profiles show an ∼6.75 km long, 3.2 km wide and 200 m thick sedimentary sequence with chaotic to weakly stratified reflections we interpret as a grounding line fan deposited by a subglacial drainage channel directly upstream of the basal channel. Further downstream the seabed has a different character; it consists of harder, stratified consolidated sediments, deposited under different glaciological circumstances, or possibly bedrock. In contrast to the standard perception of a rapid change in ice shelf thickness just downstream of the grounding line, we find a flat topography of the ice shelf base with an almost constant ice thickness gradient along-flow, indicating only little basal melting, but an initial widening of the basal channel, which we ascribe to melting along its flanks. Our findings provide a detailed view of a more complex interaction between the ocean and subglacial hydrology to form basal channels in ice shelves.
-
Projections of the sea level contribution from the Greenland and Antarctic ice sheets rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous CMIP5 effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
-
The ice sheet and glaciers of Antarctica and Greenland represent the largest sources of freshwater on planet Earth. The understanding and quantification of their dynamic properties such as albedo, precipitation, ice mass movement, and ice elevation changes are critical for the improved climate and mass balance models. The present study utilizes space-borne optical and synthetic aperture radar (SAR) imagery to measure the ice surface velocity at high spatial resolution for a part of the central Dronning Maud Land (cDML), East Antarctica. The datasets from Landsat-8 and Sentinel-1 SAR satellite are used for ice stream velocity estimation using feature-offset tracking and differential interferometric SAR (DInSAR) methods. The derived velocity products are validated with ground based stakes network at annual time scale. The fundamental ice flow laws are used to estimate the ice outflux or discharge for selected ice stream drainage basins of cDML at fluxgate locations. The ice stream basin has been delineated using combination of elevation, slope and continental scale velocity maps. The ice influx for study area is estimated using ECMWF fifth generation reanalysis (ERA5) and Regional Atmospheric Climate Model (RACMO) v2.3 model outputs. The estimated influx and outflux are in the ranges of 0.18–4.167 Gt/y and 0.201 to 1.278 Gt/y respectively, indicating net positive mass balance for the selected area.
-
The limited number of surface mass balance (SMB) observations in the Antarctic inland hampers estimates of ice-sheet contribution to global sea level and locations with million-year-old ice. We present finely resolved SMB over the past three centuries in a low-accumulation region with significant depth hoar formation on Dome Fuji derived from ∼1,100 km of microwave radar stratigraphy dated with a firn core. The regional-mean SMB over the past 264 years is estimated to ∼22.5 ± 3.3 kg m−2 a−1, but with large local variability of up to 30%. We found that local SMB is negatively correlated with surface slope at scales of a few hundred meters, resulting in anomalous zones of low SMB which represent as much as 8–10% of the total SMB on the inland plateau if the SMB-slope relationship is more widely valid. This impact should be investigated further to improve estimates of Antarctic mass balance and sea-level contribution.
-
Reconstructing past ice-sheet surface changes is key to testing and improving ice-sheet models. Data constraining the past behaviour of the East Antarctic Ice Sheet are sparse, limiting our understanding of its response to past, present and future climate change. Here, we report the first cosmogenic multi-nuclide (10Be, 26Al, 36Cl) data from bedrock and erratics on nunataks along the Jutulstraumen and Penck Trough ice streams in western Dronning Maud Land, East Antarctica. Spanning elevations between 741 and 2394 m above sea level, the samples have apparent exposure ages between 2 ka and 5 Ma. The highest-elevation bedrock sample indicates (near-) continuous minimum exposure since the Pliocene, with a low apparent erosion rate of 0.15 ± 0.03 m Ma−1, which is similar to results from eastern Dronning Maud Land. In contrast to studies in eastern Dronning Maud Land, however, our data show clear indications of a thicker-than-present ice sheet within the last glacial cycle, with a thinning of ∼35–120 m during the Holocene (∼2–11 ka). Difficulties in separating suitable amounts of quartz from the often quartz-poor rock-types in the area, and cosmogenic nuclides inherited from exposure prior to the last deglaciation, prevented robust thinning estimates from elevational profiles. Nevertheless, the results clearly demonstrate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle, a constraint that should be considered in future ice-sheet model simulations.
Explore
Topic
- glasiologi
- AABW (1)
- akkumulasjon (9)
- Amundsenhavet (2)
- Antarctica (2)
- Antarktis (149)
- Antarktistraktaten 1959 (1)
- atmosfæren (2)
- batymetri (3)
- Belgica ekspedisjon (1)
- bentiske organismer (1)
- bibliometri (1)
- biodiversitet (1)
- biogeokjemi (2)
- biografi (1)
- biologi (5)
- biosfære (1)
- blåis (5)
- bølger (2)
- botanikk (1)
- Bouvetøya (4)
- brehylle (10)
- bunnvann (1)
- Carsten Egeberg Borchgrevink (1)
- Cosmogenic isotopes (1)
- Cosmogenic nuclide surface exposure age dating (1)
- database (2)
- Deglaciation (1)
- deglasiasjon (2)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Den Norske Antarktisekspedisjonen 1956-60 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- Det Internasjonale polaråret 2007 (2)
- drivhuseffekt (1)
- Dronning Maud Land (166)
- ekkolodd (1)
- ekspedisjoner (43)
- firnsnø (3)
- fjernanalyse (3)
- fjernmåling (5)
- fjord (1)
- flyfotografering (1)
- forskning (33)
- fugler (1)
- fysisk geografi (4)
- geodesi (7)
- geofysikk (39)
- geografi (8)
- geokjemi (4)
- geologi (33)
- geomorfologi (6)
- Geomorphology (1)
- georadar (2)
- geotermisk strømning (1)
- geovitenskap (6)
- Glacial history (1)
- Glaciation (1)
- glasiokjemi (1)
- global oppvarming (7)
- gravimetri (2)
- havbølger (1)
- havbunnen (5)
- havet (1)
- havis (25)
- havnivå (3)
- havnivåstigning (19)
- havstrømmer (2)
- historie (1)
- holocene (3)
- hvalfangst (1)
- hydrografi (4)
- hydrokjemi (1)
- hydrologi (6)
- Ice sheet (1)
- Ice Shelf (1)
- iceberg calving (1)
- IGY 1957-58 (1)
- innlandsis (70)
- is (11)
- is radar (1)
- isberg (7)
- isbre (6)
- isbreer (36)
- isbrem (21)
- isfjell (12)
- isfront (5)
- isgjennomtrengende (1)
- iskjerner (22)
- iskrystaller (1)
- ismeltvann (1)
- isshelf (69)
- issmelting (2)
- isstrøm (16)
- istykkelse (2)
- jordmagnetiske målinger (1)
- kalv (2)
- kalving (6)
- karbondioksid (1)
- kartlegging (5)
- kartografi (1)
- kjemi (3)
- klima (13)
- klimaendringer (35)
- klimamodeller (6)
- klimatologi (27)
- konferanse (1)
- konferanser (1)
- kongress (1)
- kontinentalsokkel (7)
- kryosfæren (3)
- laboratorieeksperimenter (1)
- Last Glacial Maximum (1)
- lille istiden (1)
- litteratur (1)
- logistikk (2)
- målinger (1)
- marin biologi (4)
- marin geofysikk (2)
- marin geologi (6)
- maringeologi (1)
- marinøkologi (1)
- Maudheim (Antarktis) (1)
- Maudheimekspedisjonen (26)
- metamorfologi (1)
- meteorologi (32)
- miljøendringer (2)
- miljøforskning (1)
- miljøvern (1)
- modellering (1)
- Modelling (1)
- morfologi (5)
- NARE 1976/77 (2)
- NARE 1978/79 (8)
- NARE 1984/85 (3)
- NARE 1989/90 (3)
- NARE 1991/92 (3)
- NARE 1992/93 (6)
- NARE 1993/94 (5)
- NARE 1996/97 (7)
- NARE 1997/98 (2)
- NARE 2000/01 (3)
- NARE ekspedisjoner (3)
- naturressurser (1)
- NAX (1)
- NBSAE 1949-52 (26)
- Norge (1)
- Norsk-britisk-svenske antarktisekspedisjon (26)
- Norsk Polarinstitutt (1)
- Norvegia ekspedisjoner (1)
- Norwegian Antarctic Expedition 1968-69 (1)
- NSBX 1949-52 (27)
- numerisk modellering (1)
- nunataker (3)
- observasjoner (5)
- oppdagelsesreiser (1)
- ornitologi (4)
- oseanografi (36)
- overflateakkumulering (1)
- overvintring (1)
- paleoglasiologi (2)
- paleoklimatologi (11)
- polarekspedisjoner (1)
- polarforskning (4)
- polarimetrisk radar (1)
- polarområdene (17)
- Quaternary (1)
- radar observasjoner (3)
- radarundersøkelse (1)
- radarundersøkelser (1)
- radioaktivitet (1)
- Radiocarbon dating (1)
- satellite altimetri (1)
- satellite bilder (5)
- satellite mikrobølgesensorer (1)
- satellitt (1)
- satellittbilder (5)
- satellitteknologi (1)
- Sea level (1)
- sedimenter (4)
- sedimentologi (5)
- seismisk undersøkelse (1)
- seismologi (9)
- sjøis (3)
- sjøvann (1)
- smelting (12)
- snø (16)
- snø akkumulasjon (1)
- snø radar (1)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (77)
- Sørpolen (1)
- stabile isotoper (3)
- storbreen (1)
- stratigrafi (12)
- subglasial (1)
- subglasial biodiversitet (1)
- subglasial geologi (1)
- subglasial innsjø (8)
- subglasial topografi (1)
- Sydpolen (2)
- symposium (2)
- teknologi (6)
- telemetri (1)
- Thorshavn ekspedisjon (1)
- tidevannsbreen (1)
- tidevannsmålinger (1)
- tidsserieanalyse (1)
- tomografi (1)
- topografi (15)
- transantarktiske ekspedisjoner (2)
- vannmasser (4)
- vitenskap (1)
- Vostoksjøen (1)
- vulkaner (2)
- Weddellhavet (16)
- zoologi (1)
Resource type
- Book (14)
- Book Section (58)
- Conference Paper (2)
- Document (6)
- Journal Article (259)
- Manuscript (1)
- Report (2)
- Thesis (2)
Publication year
-
Between 1900 and 1999
(164)
-
Between 1920 and 1929
(1)
- 1928 (1)
-
Between 1930 and 1939
(1)
- 1933 (1)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (26)
- Between 1960 and 1969 (17)
- Between 1970 and 1979 (19)
- Between 1980 and 1989 (38)
- Between 1990 and 1999 (59)
-
Between 1920 and 1929
(1)
-
Between 2000 and 2025
(180)
- Between 2000 and 2009 (58)
- Between 2010 and 2019 (72)
- Between 2020 and 2025 (50)