Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 336 resources
-
The East Antarctic Ice Sheet stores a vast amount of freshwater, which makes it the single largest potential contributor to future sea-level rise. However, the lack of well-constrained geological records of past ice sheet changes impedes model validation, hampers mass balance estimates, and inhibits examination of ice loss mechanisms. Here we identify rapid ice-sheet thinning in coastal Dronning Maud Land from Early to Middle Holocene (9000–5000 years ago) using a deglacial chronology based on in situ cosmogenic nuclide surface exposure dates from central Dronning Maud Land, in concert with numerical simulations of regional and continental ice-sheet evolution. Regional sea-level changes reproduced from our refined ice-load history show a highstand at 9000–8000 years ago. We propose that sea-level rise and a concomitant influx of warmer Circumpolar Deep Water triggered ice shelf breakup via the marine ice sheet instability mechanism, which led to rapid thinning of upstream coastal ice sheet sectors.
-
We investigated mass balance changes over five ice rises in the last few decades near Fimbul and Nivl ice shelves in central Dronning Maud Land. We use the Input-Output Method constrained using field-based geophysical measurements conducted during the austral summers of 2012–14 over three ice rises near the Fimbul Ice Shelf. Further, we use satellite altimetry data (ICESat, ICESat-2, and CryoSat-2) to estimate geodetic mass balance over all five ice rises in recent decades. Both field- and satellite-based estimates show that until 2010, three out of five ice rises were thickening (0.4–0.2 m<sub>ieq</sub> a<sup>−1</sup>) while two were close to balance. However, over the last decade, the ice rises thickening previously started to thin (−0.2–−0.6 m<sub>ieq</sub> a<sup>−1</sup>) while the other two remained close to balance. Much of this variability is likely associated with regional surface mass balance trends, with each ice rise exhibiting its characteristics depending on its local glaciological settings.
-
The coastal Droning Maud Land in East Antarctica is characterized by small ice shelves with numbers of promontories and locally grounded isles, both called ice rises. These ice rises are typically dome-shaped and surface elevations are hundreds of meters above the surrounding ice shelves, which cause strong orographic effects on surface mass balance (SMB). We conducted shallow ice-penetrating radar sounding to visualize firn stratigraphy in the top 35 m over ~400 km of profiles across the Nivlisen Ice Shelf, and in a grid pattern over two adjacent ice rises (Djupranen and Leningradkollen). We tracked six reflectors (isochrones) and dated them using two ice cores taken at the ice rise summits, from which SMB over six periods in the past three decades was retrieved. The overall SMB pattern across the ice shelf remained similar for all periods; however, the eastwest contrast in SMB varies by a factor of 1.5–2 between the Leningradkollen and Djupranen grounding lines. The SMB patterns over the ice rises are more varied owing to complex interactions between topography, snowfall and wind. We use our results to evaluate the regional climate model RACMO2.3p2 in terms of the spatial SMB distribution and temporal changes over the ice shelf and ice rises at regional scale.
-
Changes in ocean-driven basal melting have a key influence on the stability of ice shelves, the mass loss from the ice sheet, ocean circulation, and global sea level rise. Coupled ice sheet–ocean models play a critical role in understanding future ice sheet evolution and examining the processes governing ice sheet responses to basal melting. However, as a new approach, coupled ice sheet–ocean systems come with new challenges, and the impacts of solutions implemented to date have not been investigated. An emergent feature in several contributing coupled models to the 1st Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1) was a time-varying oscillation in basal melt rates. Here, we use a recently developed coupling framework, FISOC (v1.1), to connect the modified ocean model ROMSIceShelf (v1.0) and ice sheet model Elmer/Ice (v9.0), to investigate the origin and implications of the feature and, more generally, the impact of coupled modeling strategies on the simulated basal melt in an idealized ice shelf cavity based on the MISOMIP setup. We found the spatial-averaged basal melt rates (3.56 m yr−1) oscillated with an amplitude ∼0.7 m yr−1 and approximate period of ∼6 years between year 30 and 100 depending on the experimental design. The melt oscillations emerged in the coupled system and the standalone ocean model using a prescribed change of cavity geometry. We found that the oscillation feature is closely related to the discretized ungrounding of the ice sheet, exposing new ocean, and is likely strengthened by a combination of positive buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and the frequent coupling of ice geometry and ocean evolution. Sensitivity tests demonstrate that the oscillation feature is always present, regardless of the choice of coupling interval, vertical resolution in the ocean model, tracer properties of cells ungrounded by the retreating ice sheet, or the dependency of friction velocities to the vertical resolution. However, the amplitude, phase, and sub-cycle variability of the oscillation varied significantly across the different configurations. We were unable to ultimately determine whether the feature arises purely due to numerical issues (related to discretization) or a compounding of multiple physical processes amplifying a numerical artifact. We suggest a pathway and choices of physical parameters to help other efforts understand the coupled ice sheet–ocean system using numerical models.
-
Floating ice shelves are the Achilles’ heel of the Antarctic Ice Sheet. They limit Antarctica’s contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
-
Fe(II) is more soluble and bioavailable than Fe(III) species, therefore the investigation of their relative abundance and redox processes is relevant to better assess the supply of bioavailable iron to the ocean and its impact on marine productivity. In this context, we present a discrete chemiluminescence-based method for the determination of Fe(II) in firn matrices. The method was applied on discrete samples from a snow pit collected at Dome C (DC, Antarctica) and on a shallow firn core from the Holtedahlfonna glacier (HDF, Svalbard), providing the first Fe(II) record from both Antarctica and Svalbard. The method showed low detection limits (0.006 ng g−1 for DC and 0.003 ng g−1 for the HDF) and a precision ranging from 3% to 20% RSD. Fe(II) concentrations ranged between the LoD and 0.077 ng g−1 and between the LoD and 0.300 ng g−1 for the Antarctic and Arctic samples, respectively. The Fe(II) contribution with respect to the total dissolved Fe was comparable in both sites accounting, on average, for 5% and 3%, respectively. We found that Fe(II) correctly identified the Pinatubo/Cerro Hudson eruption in the DC record, demonstrating its reliability as volcanic tracer, while, on the HDF core, we provided the first preliminary insight on the processes that might influence Fe speciation in firn matrices (i.e. organic ligands and pH influences).
-
The land ice contribution to global mean sea level rise has not yet been predicted using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models, but primarily used previous-generation scenarios and climate models, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.
-
Curvilinear channels on the surface of an ice shelf indicate the presence of large channels at the base. Modelling studies have shown that where these surface expressions intersect the grounding line, they coincide with the likely outflow of subglacial water. An understanding of the initiation and the ice–ocean evolution of the basal channels is required to understand the present behaviour and future dynamics of ice sheets and ice shelves. Here, we present focused active seismic and radar surveys of a basal channel, ∼950 m wide and ∼200 m high, and its upstream continuation beneath Support Force Glacier, which feeds into the Filchner Ice Shelf, West Antarctica. Immediately seaward from the grounding line, below the basal channel, the seismic profiles show an ∼6.75 km long, 3.2 km wide and 200 m thick sedimentary sequence with chaotic to weakly stratified reflections we interpret as a grounding line fan deposited by a subglacial drainage channel directly upstream of the basal channel. Further downstream the seabed has a different character; it consists of harder, stratified consolidated sediments, deposited under different glaciological circumstances, or possibly bedrock. In contrast to the standard perception of a rapid change in ice shelf thickness just downstream of the grounding line, we find a flat topography of the ice shelf base with an almost constant ice thickness gradient along-flow, indicating only little basal melting, but an initial widening of the basal channel, which we ascribe to melting along its flanks. Our findings provide a detailed view of a more complex interaction between the ocean and subglacial hydrology to form basal channels in ice shelves.
-
Projections of the sea level contribution from the Greenland and Antarctic ice sheets rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous CMIP5 effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
-
The ice sheet and glaciers of Antarctica and Greenland represent the largest sources of freshwater on planet Earth. The understanding and quantification of their dynamic properties such as albedo, precipitation, ice mass movement, and ice elevation changes are critical for the improved climate and mass balance models. The present study utilizes space-borne optical and synthetic aperture radar (SAR) imagery to measure the ice surface velocity at high spatial resolution for a part of the central Dronning Maud Land (cDML), East Antarctica. The datasets from Landsat-8 and Sentinel-1 SAR satellite are used for ice stream velocity estimation using feature-offset tracking and differential interferometric SAR (DInSAR) methods. The derived velocity products are validated with ground based stakes network at annual time scale. The fundamental ice flow laws are used to estimate the ice outflux or discharge for selected ice stream drainage basins of cDML at fluxgate locations. The ice stream basin has been delineated using combination of elevation, slope and continental scale velocity maps. The ice influx for study area is estimated using ECMWF fifth generation reanalysis (ERA5) and Regional Atmospheric Climate Model (RACMO) v2.3 model outputs. The estimated influx and outflux are in the ranges of 0.18–4.167 Gt/y and 0.201 to 1.278 Gt/y respectively, indicating net positive mass balance for the selected area.
-
The limited number of surface mass balance (SMB) observations in the Antarctic inland hampers estimates of ice-sheet contribution to global sea level and locations with million-year-old ice. We present finely resolved SMB over the past three centuries in a low-accumulation region with significant depth hoar formation on Dome Fuji derived from ∼1,100 km of microwave radar stratigraphy dated with a firn core. The regional-mean SMB over the past 264 years is estimated to ∼22.5 ± 3.3 kg m−2 a−1, but with large local variability of up to 30%. We found that local SMB is negatively correlated with surface slope at scales of a few hundred meters, resulting in anomalous zones of low SMB which represent as much as 8–10% of the total SMB on the inland plateau if the SMB-slope relationship is more widely valid. This impact should be investigated further to improve estimates of Antarctic mass balance and sea-level contribution.
-
Reconstructing past ice-sheet surface changes is key to testing and improving ice-sheet models. Data constraining the past behaviour of the East Antarctic Ice Sheet are sparse, limiting our understanding of its response to past, present and future climate change. Here, we report the first cosmogenic multi-nuclide (10Be, 26Al, 36Cl) data from bedrock and erratics on nunataks along the Jutulstraumen and Penck Trough ice streams in western Dronning Maud Land, East Antarctica. Spanning elevations between 741 and 2394 m above sea level, the samples have apparent exposure ages between 2 ka and 5 Ma. The highest-elevation bedrock sample indicates (near-) continuous minimum exposure since the Pliocene, with a low apparent erosion rate of 0.15 ± 0.03 m Ma−1, which is similar to results from eastern Dronning Maud Land. In contrast to studies in eastern Dronning Maud Land, however, our data show clear indications of a thicker-than-present ice sheet within the last glacial cycle, with a thinning of ∼35–120 m during the Holocene (∼2–11 ka). Difficulties in separating suitable amounts of quartz from the often quartz-poor rock-types in the area, and cosmogenic nuclides inherited from exposure prior to the last deglaciation, prevented robust thinning estimates from elevational profiles. Nevertheless, the results clearly demonstrate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle, a constraint that should be considered in future ice-sheet model simulations.
-
Understanding changes in Antarctic ice shelf basal melting is a major challenge for predicting future sea level. Currently, warm Circumpolar Deep Water surrounding Antarctica has limited access to the Weddell Sea continental shelf; consequently, melt rates at Filchner-Ronne Ice Shelf are low. However, large-scale model projections suggest that changes to the Antarctic Slope Front and the coastal circulation may enhance warm inflows within this century. We use a regional high-resolution ice shelf cavity and ocean circulation model to explore forcing changes that may trigger this regime shift. Our results suggest two necessary conditions for supporting a sustained warm inflow into the Filchner Ice Shelf cavity: (i) an extreme relaxation of the Antarctic Slope Front density gradient and (ii) substantial freshening of the dense shelf water. We also find that the on-shelf transport over the western Weddell Sea shelf is sensitive to the Filchner Trough overflow characteristics.
-
Ice shelves around Antarctica can provide back stress for outlet glaciers and control ice sheet mass loss. They often contain narrow bands of thin ice termed ice shelf channels. Ice shelf channel morphology can be interpreted through surface depressions and exhibits junctions and deflections from flowlines. Using ice flow modeling and radar, we investigate ice shelf channels in the Roi Baudouin Ice Shelf. These are aligned obliquely to the prevailing easterly winds. In the shallow radar stratigraphy, syncline and anticline stacks occur beneath the upwind and downwind side, respectively. The structures are horizontally and vertically coherent, except near an ice shelf channel junction where patterns change structurally with depth. Deeper layers truncate near basal incisions. Using ice flow modeling, we show that the stratigraphy is ∼9 times more sensitive to atmospheric variability than to oceanic variability. This is due to the continual adjustment toward flotation. We propose that syncline-anticline pairs in the shallow stratigraphy are caused by preferential snow deposition on the windward side and wind erosion at the downwind side. This drives downwind deflection of ice shelf channels of several meters per year. The depth variable structures indicate formation of an ice shelf channel junction by basal melting. We conclude that many ice shelf channels are seeded at the grounding line. Their morphology farther seaward is shaped on different length scales by ice dynamics, the ocean, and the atmosphere. These processes act on finer (subkilometer) scales than are captured by most ice, atmosphere, and ocean models, yet the dynamics of ice shelf channels may have broader implications for ice shelf stability.
-
Ice rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.
-
Direct measurements of spatially distributed vertical strain within ice masses are scientifically valuable but challenging to acquire. We use manual marker tracking and automatic cross correlation between two repeat optical televiewer (OPTV) images of an ~100 m-long borehole at Derwael Ice Rise (DIR), Antarctica, to reconstruct discretised, vertical strain rate and velocity at millimetre resolution. The resulting profiles decay with depth, from −0.07 a−1 at the surface to ~−0.002 a−1 towards the base in strain and from −1.3 m a−1 at the surface to ~−0.5 m a−1 towards the base in velocity. Both profiles also show substantial local variability. Three coffee-can markers installed at different depths into adjacent boreholes record consistent strain rates and velocities, although averaged over longer depth ranges and subject to greater uncertainty. Measured strain-rate profiles generally compare closely with output from a 2-D ice-flow model, while the former additionally reveal substantial high-resolution variability. We conclude that repeat OPTV borehole logging represents an effective means of measuring distributed vertical strain at millimetre scale, revealing high-resolution variability along the uppermost ~100 m of DIR, Antarctica.
-
Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propose a model to explain the formation of extensive, coherent blue ice moraine sequences based on the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure ages. GPR transects (100 and 25 MHz) both perpendicular and parallel to moraine ridges at Mount Achernar reveal an internal structure defined by alternating relatively clean ice and steeply dipping debris bands extending to depth, and where visible, to the underlying bedrock surface. Sediment is carried to the surface from depth along these debris bands, and sublimates out of the ice, accumulating over time (>300 ka). The internal pattern of dipping reflectors, combined with increasing surface exposure ages, suggest sequential exposure of the sediment where ice and debris accretes laterally to form the moraine. Subsurface structure varies across the moraine and can be linked to changes in basal entrainment conditions. We speculate that higher concentrations of debris may have been entrained in the ice during colder glacial periods or entrained more proximal to the moraine sequence.
-
The Antarctic ice sheet has been losing mass over past decades through the accelerated flow of its glaciers, conditioned by ocean temperature and bed topography. Glaciers retreating along retrograde slopes (that is, the bed elevation drops in the inland direction) are potentially unstable, while subglacial ridges slow down the glacial retreat. Despite major advances in the mapping of subglacial bed topography, significant sectors of Antarctica remain poorly resolved and critical spatial details are missing. Here we present a novel, high-resolution and physically based description of Antarctic bed topography using mass conservation. Our results reveal previously unknown basal features with major implications for glacier response to climate change. For example, glaciers flowing across the Transantarctic Mountains are protected by broad, stabilizing ridges. Conversely, in the marine basin of Wilkes Land, East Antarctica, we find retrograde slopes along Ninnis and Denman glaciers, with stabilizing slopes beneath Moscow University, Totten and Lambert glacier system, despite corrections in bed elevation of up to 1 km for the latter. This transformative description of bed topography redefines the high- and lower-risk sectors for rapid sea level rise from Antarctica; it will also significantly impact model projections of sea level rise from Antarctica in the coming centuries.
-
We developed a high-performance, multichannel, ultra-wideband radar system for measurements of the base and interior of the East Antarctic Ice Sheet. We designed the radar to be of high power (4000-W peak) yet portable and to be able to operate with 60-MHz bandwidth at a center frequency of 200 MHz, providing high sensitivity and fine vertical resolution relative to current technology. We used the radar to perform extensive measurements as a part of a multinational collaboration. We collected data onboard a tracked vehicle outfitted with an array of high-gain antennas. We sounded 2- to 3-km thick ice near Dome Fuji. Preliminary ice thickness data match those obtained via semicoincident measurements performed with a different surface-based pulse modulated radar system operated during the same field campaign, as well as previous airborne measurements. In addition, we mapped internal reflection horizons with fine vertical resolution from 300 m below the ice surface to ∼100 m above the bed. In this article, we provide a detailed overview of the radar instrument design, implementation, and field measurement setup. We present sample data to illustrate its capabilities and discuss how the data collected with it will be valuable for the assessment of promising drilling sites to recover ice cores that are 0.9–1.5 million years old.
Explore
Topic
- glasiologi
- AABW (1)
- akkumulasjon (9)
- Amundsenhavet (2)
- Antarctica (2)
- Antarktis (145)
- Antarktistraktaten 1959 (1)
- atmosfæren (2)
- batymetri (3)
- Belgica ekspedisjon (1)
- bentiske organismer (1)
- bibliometri (1)
- biodiversitet (1)
- biogeokjemi (1)
- biografi (1)
- biologi (5)
- biosfære (1)
- blåis (5)
- bølger (2)
- botanikk (1)
- Bouvetøya (4)
- brehylle (10)
- bunnvann (1)
- Carsten Egeberg Borchgrevink (1)
- Cosmogenic isotopes (1)
- Cosmogenic nuclide surface exposure age dating (1)
- database (2)
- Deglaciation (1)
- deglasiasjon (2)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Den Norske Antarktisekspedisjonen 1956-60 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- Det Internasjonale polaråret 2007 (2)
- drivhuseffekt (1)
- Dronning Maud Land (163)
- ekspedisjoner (43)
- firnsnø (3)
- fjernanalyse (3)
- fjernmåling (4)
- fjord (1)
- forskning (33)
- fugler (1)
- fysisk geografi (4)
- geodesi (7)
- geofysikk (38)
- geografi (7)
- geokjemi (4)
- geologi (33)
- geomorfologi (5)
- Geomorphology (1)
- georadar (2)
- geotermisk strømning (1)
- geovitenskap (6)
- Glacial history (1)
- Glaciation (1)
- glasiokjemi (1)
- global oppvarming (6)
- gravimetri (2)
- havbølger (1)
- havbunnen (5)
- havet (1)
- havis (24)
- havnivå (3)
- havnivåstigning (18)
- havstrømmer (2)
- historie (1)
- holocene (3)
- hvalfangst (1)
- hydrografi (2)
- hydrokjemi (1)
- hydrologi (4)
- Ice sheet (1)
- Ice Shelf (1)
- iceberg calving (1)
- IGY 1957-58 (1)
- innlandsis (70)
- is (11)
- is radar (1)
- isberg (7)
- isbre (6)
- isbreer (35)
- isbrem (21)
- isfjell (12)
- isfront (5)
- isgjennomtrengende (1)
- iskjerner (22)
- iskrystaller (1)
- ismeltvann (1)
- isshelf (66)
- issmelting (2)
- isstrøm (16)
- istykkelse (2)
- jordmagnetiske målinger (1)
- kalv (2)
- kalving (6)
- karbondioksid (1)
- kartlegging (4)
- kartografi (1)
- kjemi (3)
- klima (13)
- klimaendringer (32)
- klimamodeller (5)
- klimatologi (24)
- konferanse (1)
- konferanser (1)
- kongress (1)
- kontinentalsokkel (7)
- laboratorieeksperimenter (1)
- Last Glacial Maximum (1)
- lille istiden (1)
- litteratur (1)
- logistikk (2)
- målinger (1)
- marin biologi (4)
- marin geofysikk (2)
- marin geologi (6)
- maringeologi (1)
- marinøkologi (1)
- Maudheim (Antarktis) (1)
- Maudheimekspedisjonen (26)
- metamorfologi (1)
- meteorologi (31)
- miljøendringer (2)
- miljøforskning (1)
- miljøvern (1)
- modellering (1)
- Modelling (1)
- morfologi (5)
- NARE 1976/77 (2)
- NARE 1978/79 (8)
- NARE 1984/85 (3)
- NARE 1989/90 (3)
- NARE 1991/92 (3)
- NARE 1992/93 (6)
- NARE 1993/94 (5)
- NARE 1996/97 (7)
- NARE 1997/98 (2)
- NARE 2000/01 (3)
- NARE ekspedisjoner (3)
- naturressurser (1)
- NAX (1)
- NBSAE 1949-52 (26)
- Norge (1)
- Norsk-britisk-svenske antarktisekspedisjon (26)
- Norsk Polarinstitutt (1)
- Norvegia ekspedisjoner (1)
- Norwegian Antarctic Expedition 1968-69 (1)
- NSBX 1949-52 (27)
- numerisk modellering (1)
- nunataker (3)
- observasjoner (5)
- oppdagelsesreiser (1)
- ornitologi (4)
- oseanografi (31)
- overflateakkumulering (1)
- overvintring (1)
- paleoglasiologi (2)
- paleoklimatologi (11)
- polarekspedisjoner (1)
- polarforskning (4)
- polarimetrisk radar (1)
- polarområdene (16)
- Quaternary (1)
- radar observasjoner (3)
- radarundersøkelse (1)
- radarundersøkelser (1)
- radioaktivitet (1)
- Radiocarbon dating (1)
- satellite altimetri (1)
- satellite bilder (5)
- satellite mikrobølgesensorer (1)
- satellitt (1)
- satellittbilder (5)
- satellitteknologi (1)
- Sea level (1)
- sedimenter (4)
- sedimentologi (5)
- seismisk undersøkelse (1)
- seismologi (9)
- sjøis (2)
- sjøvann (1)
- smelting (12)
- snø (16)
- snø akkumulasjon (1)
- snø radar (1)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (75)
- Sørpolen (1)
- stabile isotoper (3)
- storbreen (1)
- stratigrafi (12)
- subglasial (1)
- subglasial biodiversitet (1)
- subglasial geologi (1)
- subglasial innsjø (7)
- subglasial topografi (1)
- Sydpolen (2)
- symposium (2)
- teknologi (6)
- telemetri (1)
- tidevannsbreen (1)
- tidevannsmålinger (1)
- tidsserieanalyse (1)
- tomografi (1)
- topografi (14)
- transantarktiske ekspedisjoner (2)
- vannmasser (4)
- vitenskap (1)
- Vostoksjøen (1)
- vulkaner (2)
- Weddellhavet (14)
- zoologi (1)
Resource type
- Book (14)
- Book Section (58)
- Conference Paper (2)
- Document (6)
- Journal Article (251)
- Manuscript (1)
- Report (2)
- Thesis (2)
Publication year
-
Between 1900 and 1999
(164)
-
Between 1920 and 1929
(1)
- 1928 (1)
-
Between 1930 and 1939
(1)
- 1933 (1)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (26)
- Between 1960 and 1969 (17)
- Between 1970 and 1979 (19)
- Between 1980 and 1989 (38)
- Between 1990 and 1999 (59)
-
Between 1920 and 1929
(1)
-
Between 2000 and 2025
(172)
- Between 2000 and 2009 (58)
- Between 2010 and 2019 (72)
- Between 2020 and 2025 (42)