Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 212 resources
-
The coast-parallel Dronning Maud Land (DML) mountains represent a key nucleation site for the protracted glaciation of Antarctica. Their evolution is therefore of special interest for understanding the formation and development of the Antarctic ice sheet. Extensive glacial erosion has clearly altered the landscape over the past 34 Myr. Yet, the total erosion still remains to be properly constrained. Here, we investigate the power of low-temperature thermochronology in quantifying glacial erosion in-situ. Our data document the differential erosion along the DML escarpment, with up to c. 1.5 and 2.4 km of erosion in western and central DML, respectively. Substantial erosion at the escarpment foothills, and limited erosion at high elevations and close to drainage divides, is consistent with an escarpment retreat model. Such differential erosion suggests major alterations of the landscape during 34 Myr of glaciation and should be implemented in future ice sheet models.
-
The East Antarctic Ice Sheet (EAIS) is generally assumed to have been relatively insensitive to Quaternary climate change. However, recent studies have shown potential instabilities in coastal, marine sectors of the EAIS. In addition, long-term climate reconstructions and modelling experiments indicate the potential for significant changes in ice volume and ice sheet configuration since the Pliocene. Hence, more empirical evidence for ice surface and ice volume changes is required to discriminate between contrasting inferences. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration focused on improving ice sheet models by filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes along the western Dronning Maud Land (DML) margin and combining this with advances in numerical techniques. Here, we report cosmogenic multi-nuclide data from bedrock and erratics at 72 sample locations on nunatak ranges from Heimefrontfjella to along Penck-Jutulstraumen ice stream throughs in western Dronning Maud Land. The sample locations span elevations between 741-2437 m above sea level, and record apparent exposure ages between <2 ka and >5 Ma. The highest bedrock samples, from high on the inland nunatak ranges, indicate continuous exposure since >5 Ma, with a very low erosion rate of 15±3 cm Ma-1. These results indicate that the ice sheet has not extensively buried and eroded these mountain ranges since at least the Pliocene Moreover, and in contrast to current studies in eastern Dronning Maud Land, we record clear indications of a thicker-than-present ice sheet along the Penck-Jutulstraumen throughs within the last glacial cycle, with a thinning of ~35-120 m towards the present ice surface on several nunataks during the Holocene (~2-11 ka). These results thus indicate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle.
-
The bedrock of Mühlig-Hofmannfjella, central Dronning Maud Land in eastern Antarctica, is part of the high-grade Maud Belt and comprises a deep-seated metamorphic-plutonic complex. The P-T-t evolution of anatectic supracrustal gneisses has been recovered through a study of mineral assemblages, textural relationships and U-Pb ID TIMS geochronology on zircon and monazite followed by pseudosection modelling. Peak conditions reached granulite facies conditions (T ≥ 810–820 °C) at moderate crustal depths (P = ca. 8 kbar) and resulted in partial melting. Peak-pressure conditions were followed by isothermal decompression at elevated temperatures. After exhumation to crustal levels of about 4–5 kbar, the area underwent a final near-isobaric cooling, which is documented by a secondary growth of garnet. Zircons indicate a period of growth at 570–566 Ma, whereas monazite ages range from 610 to 525 Ma. A likely heat source for the granulite facies metamorphism is decay of radioactive heat-producing elements in the core of the orogen. The combined geochronology and metamorphic data indicate a prolonged, clockwise P-T path, which reflects collision and formation of a long-lived orogenic plateau.
-
Late Tonian (ca. 785–760 Ma) granodioritic to granitic orthogneisses of the Schirmacher Oasis region in Dronning Maud Land (DML), East Antarctica, are interpreted as recording an active continental margin setting at the periphery of Kalahari and Rodinia. The rocks probably represent exposures of a significant tectonic province hidden beneath the ice, the erosional remnants of which are recorded as detrital zircons in late Tonian-Cryogenian metasedimentary rocks throughout central and eastern DML, as well as in ice-rafted debris from recent sediments offshore Dronning Maud Land. The orthogneisses have single-stage Sm-Nd model ages of ca. 1.3–1.5 Ga and zircon Hf-signatures (εHft = +2 – +5), indistinguishable from the adjacent Grenville-age basement rocks of easternmost Kalahari. Their geochemistry suggests that they evolved in the late stages of a continental margin magmatic arc and possibly within a roll-back tectonic framework, suggestive of subduction of relatively old oceanic lithosphere. The eastern Kalahari continental arc is one of a number of continental arcs that characterize the western part of the fragmenting Rodinia and document the supercontinent “turning inside out” after its formation at ca. 1000 Ma and a period of relative tectonic quiescence between ca. 900 and 800 Ma. The rocks show an ultra-high temperature metamorphic overprint that was accompanied by syn-tectonic magmatism from ca. 650 to 600 Ma. The high temperature metamorphism is interpreted to relate to back-arc extension that also led to major anorthosite magmatism elsewhere, prior to continental collision in the region. The rocks lack the subsequent widespread high-grade metamorphic overprint at ca. 590–500 Ma which occurs in the adjacent regions due to Himalayan-style continental collision along the East African-Antarctic Orogen during Gondwana assembly.
-
A new species of nephropid lobster, Hoploparia echinata sp. nov., from the James Ross Island in the Antarctic Peninsula is here described and illustrated. The material was collected in the Santa Marta Formation (Santonian–-Campanian), the basal unit of the Marambio Group, Larsen Basin, located in the western portion of the Antarctic Peninsula. Hoploparia echinata sp. nov. can easily be differentiated from its congeners by the presence of distinct short spines on dorsal and ventral margins on the third maxillipeds, merus of the chelipeds and pereopods; these are the characters not described in other Hoploparia species so far.
-
Microcontinents and continental fragments are small pieces of continental crust that are surrounded by oceanic lithosphere. Although classically associated with passive margin formation, here we present several preserved microcontinents and continental fragments associated with subduction systems. They are located in the Coral Sea, South China Sea, central Mediterranean and Scotia Sea regions, and a “proto-microcontinent,” in the Gulf of California. Reviewing the tectonic history of each region and interpreting a variety of geophysical data allows us to identify parameters controlling the formation of microcontinents and continental fragments in subduction settings. All these tectonic blocks experienced long, complex tectonic histories with an important role for developing inherited structures. They tend to form in back-arc locations and separate from their parent continent by oblique or rotational kinematics. The separated continental pieces and associated marginal basins are generally small and their formation is quick (<50 Myr). Microcontinents and continental fragments formed close to large continental masses tend to form faster than those created in systems bordered by large oceanic plates. A common triggering mechanism for their formation is difficult to identify, but seems to be linked with rapid changes of complex subduction dynamics. The young ages of all contemporary pieces found in situ suggest that microcontinents and continental fragments in these settings are short lived. Although presently the amount of in-situ subduction-related microcontinents is meager (an area of 0.56% and 0.28% of global, non-cratonic, continental crustal area and crustal volume, respectively), through time microcontinents contributed to terrane amalgamation and larger continent formation.
-
Dronning Maud Land (DML) is a key area for the better understanding of the geotectonic history and amalgamation processes of the southern part of Gondwana. Here, we present comprehensive new zircon U–Pb–Hf–O, whole-rock Sm–Nd isotopic and geochemical data for late Neoproterozoic-Cambrian igneous rocks along a profile from central to eastern DML, which provides new insights into the crustal evolution and tectonics of the region. In central DML, magmatism dominantly occurred at 530–485 Ma, with 650–600 Ma charnockite and anorthosite locally distributed at its eastern periphery. In contrast, eastern DML experienced long-term and continuous granitic magmatism from ca. 650 Ma to 500 Ma. In central DML, the 650–600 Ma samples are characterized by highly elevated δ18O (7.5–9.5‰) associated with slightly negative to positive εHf(t) values (−1 to +3), indicating significant addition of high-δ18O crustal components, such as sedimentary material at the margin of the Kalahari Craton. Evolved Hf isotopic signatures (εHf(t) = −15 to −6) and moderately elevated O isotopic data (δ18O = 6–8‰) of the Cambrian granitic rocks from central DML indicate a significant incorporation of the pre-existing, old continental crust. In eastern DML, the suprachondritic Hf–Nd isotope signatures and moderate δ18O values of the late Neoproterozoic granites (650–550 Ma) from the Sør Rondane Mountains support the view that they mainly originated from crust of the Tonian Oceanic Arc Super Terrane (TOAST). The post-540 Ma granites, however, have more evolved Hf and Nd isotopic compositions, suggesting an increasing involvement of older continental components during Cambrian magmatism. Nd isotopes of the Cambrian granitic rocks in DML display an increasingly more radiogenic composition towards the east with model ages ranging from late Archean to Mesoproterozoic times, which is in line with the isotopic trend of the Precambrian basement in this region. The late Neoproterozoic (>600 Ma) igneous rocks in central and eastern DML were emplaced in two independent subduction systems, at the periphery of the eastern Kalahari Craton and somewhere within the Mozambique Ocean respectively. The accretion and assembly of the TOAST to the eastern margin of the Kalahari Craton and their collision with surrounding continental blocks was followed by extensive post-collisional magmatism due to delamination tectonics and orogenic collapse in the Cambrian. The late Neoproterozoic–Cambrian igneous rocks in DML thus record an orogenic cycle from subduction-accretion, continental collision to post-collisional process during and after the assembly of Gondwana.
-
This study focusses on the Grenville-age Maud Belt in Dronning Maud Land (DML), East Antarctica, which was located at the margin of the Proto-Kalahari Craton during the assembly of Rodinia. We present new U–Pb zircon ages and Hf–O isotope analyses of mafic and granitic gneisses exposed in the Orvin-Wohlthat Mountains and Gjelsvikfjella, central DML (cDML). The geochronological data indicate continuous magmatic activity from 1160 to 1070 Ma which culminated at 1110–1090 Ma, followed by high-grade metamorphism between 1080 and 1030 Ma. The majority of zircons from the Orvin-Wohlthat Mountains exhibit radiogenic Hf isotopic compositions corresponding to suprachondritic εHf (t) values and Mesoproterozoic model ages, indicating crystallization from predominantly juvenile magmas. However, the involvement of ancient sedimentary material, which were most likely derived from the adjacent Proto-Kalahari Craton, is revealed by a few samples with negative to neutral εHf (t) and significantly elevated δ18O values (8–10‰). Samples from further west, in Gjelsvikfjella have more mantle-like zircon O isotopic compositions and late Paleoproterozoic Hf model ages, indicating the incorporation of ancient, previously mantle-derived continental crust. The rocks in cDML, thus define part of an extensive Mesoproterozoic magmatic arc with subduction under the Proto-Kalahari margin. This involved significant growth of new continental crust, possibly related to slab retreat, accompanied by subordinate recycling of older crustal components. The Maud Belt has previously been correlated with the 1250–1030 Ma Natal Belt in southern Africa, which lay to the west in the context of Gondwana, although this assertion has recently been questioned. Our study supports the latter view in demonstrating that the continental arc magmatism in the Maud Belt appears to be temporally and tectonically unconnected to the accretion of (slightly older) juvenile oceanic islands in the Natal Belt, which, in contrast to the Maud Belt, show subduction polarity away from the craton. We thus speculate that the Namaqua-Natal to Maud Belt contact (exposed in the Heimefront Shear Zone) may represent a changed tectonic environment from arc/continent-continent collision to slightly younger continental margin orogenesis at the westernmost termination of this part of the global Grenville Orogen. The Maud Belt marks the beginning of a major, long-lived accretionary Andean-type tectonic regime on the eastern margin of Proto-Kalahari in the Meso-Neoproterozoic during Rodinia assembly and break-up until the formation of Gondwana.
-
Submarine groundwater discharge (SGD) measurements have been limited along the Antarctic coast, although groundwater discharge is becoming recognized as an important process in the Antarctic. Quantifying this meltwater pathway is important for hydrologic budgets, ice mass balances and solute delivery to the coastal ocean. Here, we estimate the combined discharge of subglacial and submarine groundwater to the Antarctic coastal ocean. SGD, including subglacial and submarine groundwater, is quantified along the WAP at the Marr Glacier terminus using the activities of naturally occurring radium isotopes (223Ra, 224Ra). Estimated SGD fluxes from a 224Ra mass balance ranged from (0.41 ± 0.14)×104 and (8.2 ± 2.3)×104m3 d−1. Using a salinity mass balance, we estimate SGD contributes up to 32% of the total freshwater to the coastal environment near Palmer Station. This study suggests that a large portion of the melting glacier may be infiltrating into the bedrock and being discharged to coastal waters along the WAP. Meltwater infiltrating as groundwater at glacier termini is an important solute delivery mechanism to the nearshore environment that can influence biological productivity. More importantly, quantifying this meltwater pathway may be worthy of attention when predicting future impacts of climate change on retreat of tidewater glaciers.
-
The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
-
The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve knowledge about the bed topography and investigate controls of fast ice flow. Recovery Glacier is underlain by an 800 km long trough. Its fast flow is controlled by subglacial water in its upstream and topography in its downstream region. Fast flow of Slessor Glacier is controlled by the presence of subglacial water on a rough crystalline bed. Past ice flow of adjacent Recovery and Slessor Glaciers was likely connected via the newly discovered Recovery-Slessor Gate. Changes in direction and speed of past fast flow likely occurred for upstream parts of Recovery Glacier and between Slessor Glacier and Bailey Ice Stream. Similar changes could also reoccur here in the future.
-
Detailed scanning electron microscopy (SEM) micro-texture and mineralogical analysis of lacustrine sediment recovered from Profound Lake (also known as Uruguay Lake), Antarctica, was conducted in the foreland area of the Collins Glacier, King George Island. Very coarse and coarse sand grade size fractions (2 mm – 600 μm) were examined with SEM/ energy dispersive spectrometry, while the total sand fraction and fines (silt + clay) were examined using x-ray diffraction to determine relationships to source rock, weathering and transport history and long-term clay mineral weathering, all of which are poorly understood in polar areas. The mineralogy of these sediments was compared with petrographical information of the country rock to identify potential detrital sources. The association of recovered detrital minerals, sometimes strongly pre-weathered, supports release from source rock of basaltic and andesitic compositions. The micro-texture analysis of quartz, magnetite and various plagioclase grains show micro-features that reveal a complex weathering–diagenesis history tentatively extending into the Paleogene. The bedrock was eroded mostly by glacial processes and mechanical action presumed to result from glacial crushing. Alteration minerals, likely the product of pre-weathering, are probably sourced from weathered bedrock during contact with the sub-aerial atmosphere prior to entrainment. However, amorphous silica precipitation indicates weathering subsequent to glacial erosion from the source bedrock. Cracks of variable dimensions are mostly characteristic of either frost weathering or glacial transport, and involve mechanical and chemical processes.
-
Dronning Maud Land in East Antarctica represents the central part of the Gondwana supercontinent. Geological mapping and investigation of Dronning Maud Land have been carried out over the last 40-50 years. The existing geological maps of Dronning Maud Land are, for a large part, based on fairly old data, which makes these maps inhomogeneous. The maps are at different scales, contain different levels of details, and the standards for classification of the rock units may also differ between the maps. This limits the ability to use these map to draw an overview tectonic model of the evolution of Dronning Maud Land. Moreover, the existing topographic dataset from Dronning Maud Land is based on fairly old topographic maps (1960s), and there is a discrepancy between the topographic dataset and the more recent Landsat images. There are still unmapped areas.
Explore
Topic
- geologi
- Antarctic (skip) (1)
- Antarctica (1)
- Antarktis (91)
- Antarktistraktaten 1959 (1)
- arkeologi (1)
- astronomi (1)
- atmosfæren (1)
- batymetri (1)
- berggrunnsgeologi (1)
- biogeokjemi (1)
- biografi (3)
- biografier (4)
- biologi (8)
- botanikk (10)
- Bouvetøya (17)
- brehylle (2)
- Carl Anton Larsen (7)
- Carsten Borchgrevink (4)
- Carsten Egeberg Borchgrevink (2)
- chronostratigrafi (1)
- Cosmogenic nuclide surface exposure age dating (1)
- D/S Antarctic (5)
- D/S Jason (5)
- dagbok (2)
- dagbøker (1)
- datainnsamling (1)
- Deceptionøya (1)
- Deglaciation (1)
- deglasiasjon (1)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Den norske antarktisekspedisjonen 1956-60 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- diatomeer (1)
- drivhusgasser (1)
- Dronning Maud Land (90)
- ekspedisjonen (9)
- ekspedisjoner (59)
- fjellene (2)
- flora (1)
- forskning (48)
- forskningsinfrastruktur (1)
- forskningsprogram (1)
- første landgang (10)
- forurensning (1)
- fossiler (1)
- fugler (1)
- fysikk (2)
- fysisk geografi (2)
- geodesi (3)
- geofysikk (28)
- geografi (14)
- geokjemi (16)
- geokronologi (10)
- geomorfologi (5)
- Geomorphology (1)
- geostatistikk (1)
- geovitenskap (3)
- Glacial history (1)
- glasiologi (33)
- global oppvarming (1)
- grunnvann (1)
- havbunnen (5)
- havis (5)
- havnivå (1)
- havnivåstigning (4)
- havrett (1)
- havstrømmer (1)
- Hertha (skip) (1)
- historie (1)
- holocene (1)
- hvalfangere (11)
- hvalfangst (6)
- hydrogeologi (1)
- hydrologi (1)
- Ice sheet (1)
- Ice Shelf (1)
- IGY 1957-58 (1)
- innlandsis (10)
- innsjøer (1)
- internasjonal (1)
- internasjonal samarbeid (1)
- is (1)
- isberg (1)
- isbre (1)
- isbreer (3)
- isbrem (2)
- issfjell (1)
- isshelf (4)
- isstrøm (2)
- jord (1)
- jordmagnetiske målinger (1)
- jordmagnetisme (1)
- Kapp Adare (10)
- kart (2)
- kartlegging (6)
- kjemi (3)
- klimaendringer (11)
- klimamodeller (2)
- klimatologi (5)
- konferanse (4)
- kongress (2)
- kontinentalmargin (2)
- kontinentalsokkel (1)
- kryosfæren (1)
- langhalekreps (1)
- Last Glacial Maximum (1)
- litosfæren (1)
- M/V Polarsirkel (1)
- magnetostratigrafi (1)
- magnetotelluriske eksperimenter (1)
- magnetotelluriske målinger (1)
- marin biologi (3)
- marin geofysikk (3)
- marin geologi (4)
- marin økologi (1)
- maringeologi (2)
- Maudheimekspedisjonen (7)
- menneskelig påvirkning (1)
- meteorologi (11)
- mikrobielle organismer (1)
- mikrobiologi (1)
- miljøendringer (1)
- mineraler (3)
- mineralogi (7)
- Modelling (1)
- mylonitter (1)
- NARE 1976/77 (6)
- NARE 1978/79 (2)
- NARE 1984/85 (5)
- NARE 1989/90 (5)
- NARE 1991/92 (1)
- NARE 1992/93 (1)
- NARE 1996/97 (3)
- NARE ekspedisjoner (3)
- NAX (1)
- NBSAE 1949-52 (8)
- Nordmenn (1)
- Norge (1)
- Norsk-britisk-svenske antarktisekspedisjon (8)
- Norsk Polarinstitutt (2)
- Norvegia ekspedisjonen (2)
- Norvegia ekspedisjoner (2)
- Norwegian Antarctic Expedition 1968-69 (1)
- NSBX 1949-52 (9)
- nunataker (5)
- observasjoner (1)
- Odd I (1)
- oppdagelsesreiser (20)
- ornitologi (3)
- oseanografi (15)
- overflatesnø (1)
- overvintring (8)
- paleobiologi (1)
- paleobotanikk (1)
- paleogeografi (4)
- paleoglasiologi (1)
- paleoklimatologi (8)
- paleolimnologi (1)
- paleomagnetisme (2)
- paleontologi (9)
- paleoøkologi (1)
- paleoseanografi (2)
- permafrost (3)
- Peter I. Øy (5)
- petrografi (10)
- petrologi (17)
- polarekspedisjoner (6)
- polarområdene (10)
- polarpolitikk (1)
- radioaktivitet (1)
- Radiocarbon dating (1)
- ressurser (3)
- Roald Amundsen (1)
- Rosshavet (5)
- satellitt bilder (1)
- Scotiahavet (1)
- Sea level (1)
- sedimenter (2)
- sedimentologi (3)
- seismologi (5)
- selfangst (5)
- Seymourøya (1)
- sjøis (1)
- snø (1)
- snø akkumulasjon (1)
- Sørishavet (28)
- Southern Cross (8)
- stabile isotoper (3)
- stratigrafi (8)
- subglasial innsjø (1)
- svaneøgler (1)
- Sydpolen (4)
- Sydpolsekspedisjonen (1)
- symposium (6)
- tektonikk (10)
- termokronologi (2)
- Thorshavn ekspedisjon (1)
- tidevann (1)
- tidevannsmålinger (1)
- topografi (8)
- Troll forskningsstasjon (2)
- tungmetaller (1)
- turisme (1)
- vannmasser (1)
- vannvirvler (1)
- Vestantarktis (4)
- Victoria Land (7)
- vitenskap (1)
- vulkaner (9)
- vulkanologi (1)
- Weddellhavet (17)
- zoologi (13)
Resource type
- Book (17)
- Book Section (39)
- Conference Paper (14)
- Document (7)
- Journal Article (127)
- Manuscript (1)
- Report (4)
- Thesis (3)
Publication year
- Between 1800 and 1899 (11)
-
Between 1900 and 1999
(98)
- Between 1900 and 1909 (4)
- Between 1920 and 1929 (2)
- Between 1930 and 1939 (2)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (6)
- Between 1960 and 1969 (11)
- Between 1970 and 1979 (23)
- Between 1980 and 1989 (28)
- Between 1990 and 1999 (19)
-
Between 2000 and 2025
(103)
- Between 2000 and 2009 (36)
- Between 2010 and 2019 (37)
- Between 2020 and 2025 (30)