Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 151 resources
-
Two solar proton events in September 2017 had a significant impact on the operation of the Super Dual Auroral Radar Network (SuperDARN), a global network of high-frequency (HF) radars designed for observing F region ionospheric plasma convection. Strong polar cap absorption caused near-total loss of radar backscatter, which prevented the primary SuperDARN data products from being determined for a period of several days. During this interval, the high-latitude and polar cap radars measured unusually low levels of background atmospheric radio noise. We demonstrate that these background noise measurements can be used to observe the spatial and temporal evolution of the polar cap absorption region, using an approach similar to riometry. We find that the temporal evolution of the SuperDARN radar-derived HF attenuation closely follows that of the cosmic noise absorption measured by a riometer. Attenuation of the atmospheric noise up to 10 dB at 12 MHz is measured within the northern polar cap, and up to 14 dB in the southern polar cap, which is consistent with the observed backscatter loss. Additionally, periods of enhanced attenuation lasting 2–4 hr are detected by the midlatitude radars in response to M- and X-class solar flares. Our results demonstrate that SuperDARN's routine measurements of atmospheric radio noise can be used to monitor 8- to 20-MHz radio attenuation from middle to polar latitudes, which may be used to supplement riometer data and also to investigate the causes of SuperDARN backscatter loss during space weather events.
-
The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve knowledge about the bed topography and investigate controls of fast ice flow. Recovery Glacier is underlain by an 800 km long trough. Its fast flow is controlled by subglacial water in its upstream and topography in its downstream region. Fast flow of Slessor Glacier is controlled by the presence of subglacial water on a rough crystalline bed. Past ice flow of adjacent Recovery and Slessor Glaciers was likely connected via the newly discovered Recovery-Slessor Gate. Changes in direction and speed of past fast flow likely occurred for upstream parts of Recovery Glacier and between Slessor Glacier and Bailey Ice Stream. Similar changes could also reoccur here in the future.
-
Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.
-
An idealized eddy-resolving numerical model, with topographic features common to the southern Weddell Sea, is constructed to study mechanisms through which warm deep water enters a wide continental shelf with a trough. The open ocean, represented by a 1700 m deep channel, is connected to a 400 m deep shelf with a continental slope. The shelf is narrow (50 km) in the east but widens to 300 km at the center of the model domain. Over the narrow shelf, the slope front is balanced by wind-driven Ekman downwelling and counteracting eddy overturning, favoring on-shelf transport of warm water in summer scenarios when fresher surface water is present. Over the wide shelf, the Ekman downwelling ceases, and the mesoscale eddies relax the front. Inflow of warm water is sensitive to along-shelf salinity gradients and is most efficient when denser water over the wide shelf favors up-slope eddy transport along isopycnals of the V-shaped slope front. Inflow along the eastern side of the trough cannot penetrate the sill region due to potential vorticity constraints, while along the western trough flank, eddy-induced inflow crosses the sill and reaches the ice front. The warm inflow into the trough is sensitive to the density of the outflowing dense shelf water. For weaker winds, absence of the dense water outflow leads to a reversal of the trough circulation and a strong inflow of warm water, while for stronger winds, baroclinic effects become less important and the inflow is similar to experiments including dense water outflow.
-
Long-range airborne geophysical measurements were carried out in the ICEGRAV campaigns, covering hitherto unexplored parts of interior East Antarctica and part of the Antarctic Peninsula. The airborne surveys provided a regional coverage of gravity, magnetic and icepenetrating radar measurements for major Dronning Maud Land ice stream systems, from the grounding lines up to the Recovery Lakes drainage basin, and filled in major data voids in Antarctic data compilations, such as AntGP for gravity data, ADMAP for magnetic data and BEDMAP2 for ice thickness data and the sub-ice topography. We present the first maps of gravity, magnetic and ice thickness data and bedrock topography for the region and show examples of bedrock topography and basal reflectivity patterns. The 2013 Recovery Lakes campaign was carried out with a British Antarctic Survey Twin Otter aircraft operating from the Halley and Belgrano II stations, as well as a remote field camp located at the Recovery subglacial Lake B site. Gravity measurements were the primary driver for the survey, with two airborne gravimeters (Lacoste and Romberg and Chekan-AM) providing measurements at an accuracy level of around 2 mGal r.m.s., supplementing GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite data and confirming an excellent sub-milligal agreement between satellite and airborne data at longer wavelengths.
-
Dronning Maud Land (DML) in East Antarctica is considered to be a key area for the reconstruction of the Gondwana supercontinent. We investigate the crustal shear wave velocity (Vs) model beneath the Maitri station, situated in the central DML of East Antarctica, through receiver function modelling. The analysis shows an average crustal thickness of 38.50 ± 0.5 km and a Vp/Vs ratio of 1.784 ± 0.002. The obtained Vs structure suggests that the topmost ca. 2.5 km of the crust contains ice and sediments with low Vs (1.5–2.0 km/s). This layer is underlain by a thick (ca. 12.5 km) layer of Vs = 2.25–2.6 km/s, suggestive of an extrusive igneous rock (rhyolite) at this depth range. Between 16 and 28 km depth, the Vs increases from 2.9 to 3.4 km/s. In the lower crust, a 7 km thick layer of Vs = 3.9 km/s is followed by 6 km thick underplated layer (Vs = 4.1 km/s) at the crust–mantle boundary. The uppermost mantle Vs is ca. 4.3 km/s. With the observation of underplated material in the lowermost crust, extrusive volcanic rocks in the upper crust, seaward dipping reflectors in the surrounding and a general paucity of seismicity, we believe the crust beneath the Maitri station represents a volcanic passive continental margin. We also believe that after its origin in the Precambrian and during its subsequent evolution it might have been affected by the post-Precambrian tectono-thermal event(s) responsible for the Gondwana supercontinent break-up.
-
Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.
-
Turbulence profile measurements made on the upper continental slope and shelf of the southeastern Weddell Sea reveal striking contrasts in dissipation and mixing rates between the two sites. The mean profiles of dissipation rates from the upper slope are 1–2 orders of magnitude greater than the profiles collected over the shelf in the entire water column. The difference increases toward the bottom where the dissipation rate of turbulent kinetic energy and the vertical eddy diffusivity on the slope exceed 10−7 W kg−1 and 10−2 m2 s−1, respectively. Elevated levels of turbulence on the slope are concentrated within a 100 m thick bottom layer, which is absent on the shelf. The upper slope is characterized by near-critical slopes and is in close proximity to the critical latitude for semidiurnal internal tides. Our observations suggest that the upper continental slope of the southern Weddell Sea is a generation site of semidiurnal internal tide, which is trapped along the slope along the critical latitude, and dissipates its energy in a 100 m thick layer near the bottom and within 10 km across the slope.
-
Mount Melbourne (74°21′ S, 164°43′ E) is a quiescent volcano located in northern Victoria Land, Antarctica. Tilt signals have been recorded on Mount Melbourne since early 1989 by a permanent shallow borehole tiltmeter network comprising five stations. An overall picture of tilt, air and permafrost temperatures over 15 years of continuous recording data is reported. We focused our observations on long-term tilt trends that at the end of 1997 showed coherent changes at the three highest altitude stations, suggesting the presence of a ground deformation source whose effects are restricted to the summit area of Mount Melbourne. We inverted these data using a finite spherical body source, thereby obtaining a shallow deflation volume source located under the summit area. The ground deformation observed corroborates the hypothesis that the volcanic edifice of Mount Melbourne is active and should be monitored multidisciplinarily.Keywords: Tilt monitoring; volcanic dynamics; physics volcanology; ground deformation; Victoria Land.
-
The Vestfold Hills and Rauer Group in East Antarctica have contrasting Archean to Neoproterozoic geological histories and are believed to be juxtaposed along a suture zone that now lies beneath the Sørsdal Glacier. Exact location and age of this suture zone are unknown, as is its relationship to regional deformation associated with the amalgamation of East Gondwana. To image the suture zone, magnetotelluric (MT) data were collected in Prydz Bay, East Antarctica, mainly along a profile crossing the Sørsdal Glacier and regions inland of the Vestfold Hills and Rauer Group islands. Time-frequency analysis of the MT time series yielded three important observations: (1) Wind speeds in excess of ∼8 m/s reduce coherence between electric and magnetic fields due to charged wind-blown particles of ice and snow. (2) Estimation of the MT transfer function is best between 1000 and 1400 UT when ionospheric Hall currents enhance the magnetic source field. (3) Nonplanar source field effects were minimal but detectable and removed from estimation of the MT transfer function. Inversions of MT data in 2-D and 3-D produce similar resistivity models, where structures in the preferred 3-D resistivity model correlate strongly with regional magnetic data. The electrically conductive Rauer Group is separated from the less conductive Vestfold Hills by a resistive zone under the Sørsdal Glacier, which is interpreted to be caused by oxidation during suturing. Though a suture zone has been imaged, no time constrains on suturing can be made from the MT data.
-
In 2008 a sequence of geomagnetic storms occurred triggered by high-speed solar wind streams from coronal holes. Improved estimates of precipitating fluxes of energetic electrons are derived from measurements on board the NOAA/POES 18 satellite using a new analysis technique. These fluxes are used to quantify the direct impact of energetic electron precipitation (EEP) during solar minimum on middle atmospheric hydroxyl (OH) measured from the Aura satellite. During winter, localized longitudinal density enhancements in the OH are observed over northern Russia and North America at corrected geomagnetic latitudes poleward of 55°. Although the northern Russia OH enhancement is closely associated with increased EEP at these longitudes, the strength and location of the North America enhancement appear to be unrelated to EEP. This OH density enhancement is likely due to vertical motion induced by atmospheric wave dynamics that transports air rich in atomic oxygen and atomic hydrogen downward into the middle atmosphere, where it plays a role in the formation of OH. In the Southern Hemisphere, localized enhancements of the OH density over West Antarctica can be explained by a combination of enhanced EEP due to the local minimum in Earth's magnetic field strength and atmospheric dynamics. Our findings suggest that even during solar minimum, there is substantial EEP-driven OH production. However, to quantify this effect, a detailed knowledge of where and when the precipitation occurs is required in the context of the background atmospheric dynamics.
-
We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as “signal carriers,” transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.
-
The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Federal Institute for Geosciences and Natural Resources (BGR) collected around 150 hours of new gravity, magnetic and ice-penetrating radar data from east and south of Princess Elisabeth station in Dronning Maud Land between 2013 and 2015. Survey lines were spaced 10 km apart. The 2013/2014 and 2014/2015 used different gravimeters; a LaCoste and Romberg AirSea gravimeter (LCR) at constant barometric altitude and a Gravimetric Technologies GT2A gravimeter at constant ground separation. Both surveys used a Scintrex Cs-3 caesium vapour magnetometer mounted in a tail boom with compensation for the airframe calculated using a fuselage-mounted three-component fluxgate magnetometer. The GT2A gravity data reflect the effects of short-wavelength density contrasts between basement rocks and the ice sheet more reliably than the LCR data. Cross-over analysis suggests the repeatability of data collection with the GT2A lies at the sub-milliGal level. A broad subglacial channel that separates eastern Sør Rondane from the Yamato Belgica Mountains is evident in the gravity data. In the south of the survey region, the data reveal a dendritic pattern of subglacial valleys that converge towards the SW. Strong NS-trending magnetic anomalies coincide with the Yamato-Belgica Mountains. Further west, subtler ESE-trending anomalies confirm proposals that the SE Dronning Maud Land province continues into the region south of eastern Sør Rondane. An unexpected feature of both data sets is the apparent termination of the anomaly patterns associated with the province at a NNW-trending anomaly running south of Princess Elisabeth.
-
The geology of East Antarctica and its correlation in major supercontinents is highly speculative, since only a very small part of it is exposed. Therefore a better connection between geology and geophysics is needed in order to correlate exposed regions with ice-covered, geophysically-defined, blocks. In Dronning Maud Land (DML), two distinct late Mesoproterozoic/early Neoproterozoic tectono-metamorphic provinces appear, separated by the major, NE-trending Forster Magnetic Anomaly and South Orvin Shear Zone. To the west of this lineament, the Maud Belt has clear affinities with Grenville-age continent-continent mobile belts. East of the Forster Magnetic Anomaly, juvenile rocks with early Neoproterozoic age (Rayner-age) and an accretionary character crop out. The international GEA-II expedition (2012) targeted a white spot on the geological map immediately to the E of the Forster Magnetic Anomaly. This area allows the characterization and ground-truthing of a large and mostly ice-covered region, the SE DML Province that had previously been interpreted as an older cratonic block. However, new SHRIMP/SIMS zircon analyses and their geochemistry indicates that the exposed basement consists of a ca. 1000-900 Ma juvenile terrane that is very similar to rocks in Sor Rondane. It lacks significant metamorphic overprint at the end of crust formation, but it shows medium to high-grade overprinting between ca. 630-520 Ma, associated with significant felsic melt production, including A-type granitoid magmatism. Therefore, the aeromagnetically distinct SE DML province does neither represent the foreland of a Late Neoproterozoic/EarlyPaleozoic mobile belt, nor a craton, as has previously been speculated. It more likely represents the more juvenile, westward continuation of Rayner-age crust (1000-900 Ma). To the west it abuts along the NE-trending Forster Magnetic Anomaly. The latter is interpreted as a suture, which separates typical Grenville-age crust of the Maud Belt (ca. 1200-1030 Ma) to the W from Rayner-age crust to the E. Therefore the larger eastern part of DML has clearly Indian affinities. Its juvenile character with a lack of metamorphic overprint at the end of crust formation points to an accretionary history along this part of the Indian segment of Rodinia, immediately following final Rodinia assembly.
-
In the South Shetland Margin (SSM), Antarctic Peninsula, a bottom-simulating reflector indicates the presence of hydrate between ca. 500 and 3000 m water depth (mwd). The cold seabed temperatures allow hydrate stability at shallower water depths. During the past five decades, the Antarctic Peninsula has been warming up faster than any other part of the Southern Hemisphere, and long-term ocean warming could affect the stability of the SSM hydrate reservoir at shallow waters. Here, we model the transient response of the SSM hydrate reservoir between 375 and 450 mwd to ocean warming for the period 1958–2100. For the period 1958–2010, seabed temperatures are given by oceanographic measurements in the area, and for 2010–2100 by two temperature scenarios represented by the observed trends for the periods 1960–2010 (0.0034°C y−1) and 1980–2010 (0.023°C y−1). Our results show no hydrate-sourced methane emissions for an ocean warming rate at the seabed of 0.0034 °C y−1. For a rate of 0.023°C y−1, emissions start in 2028 at 375 mwd and extend to 442 mwd at an average rate of about 0.91 mwd y−1, releasing ca. 1.13×103 mol y−1 of methane per metre along the margin by 2100. These emissions originate from dissociation at the top of the hydrate layer, a physical process that steady-state modelling cannot represent. Our results are speculative on account of the lack of direct evidence of a shallow water hydrate reservoir, but they illustrate that the SSM is a key area to observe the effects of ocean warming-induced hydrate dissociation in the coming decades. Keywords: Hydrate; ocean warming; methane emissions; transient modelling; South Shetland Margin; Antarctic Peninsula.
-
The late twentieth century was marked by a significant summertime trend in the Southern Annular Mode (SAM), the dominant mode of tropospheric variability in the extratropical Southern Hemisphere (SH). This trend with poleward shifting tropospheric westerlies was attributed to downward propagation of stratospheric changes induced by ozone depletion. However, the role of the ocean in setting the SAM response to ozone depletion and its dynamical forcing remains unclear. Here we show, using idealized experiments with a state-of-the-art atmospheric model and analysis of Intergovernmental Panel on Climate Change climate simulations, that frontal sea surface temperature gradients in the midlatitude SH are critical for translating the ozone-induced stratospheric changes down to the surface. This happens through excitation of wave forcing, which controls the vertical connection of the tropospheric SAM with the stratosphere and shows the importance of internal tropospheric dynamics for stratosphere/troposphere coupling. Thus, improved simulation of oceanic fronts may reduce uncertainties in simulating SH ozone-induced climate changes.
-
To assess published hypotheses surrounding the recent slowdown in surface warming (hiatus), we compare five available global observational surface temperature estimates to two 30-member ensembles from the Norwegian Earth System Model (NorESM). Model ensembles are initialized in 1980 from the transient historical runs and driven with forcings used in the CMIP5 experiments and updated forcings based upon current observational understanding, described in Part 1. The ensembles' surface temperature trends are statistically indistinguishable over 1998–2012 despite differences in the prescribed forcings. There is thus no evidence that forcing errors play a significant role in explaining the hiatus according to NorESM. The observations fall either toward the lower portion of the ensembles or, for some observational estimates and regions, outside. The exception is the Arctic where the observations fall toward the upper ensemble bounds. Observational data set choices can make a large difference to findings of consistency or otherwise. Those NorESM ensemble members that exhibit Nino3.4 Sea Surface Temperature (SST) trends similar to observed also exhibit comparable tropical and to some extent global mean trends, supporting a role for El Nino Southern Oscillation in explaining the hiatus. Several ensemble members capture the marked seasonality observed in Northern Hemisphere midlatitude trends, with cooling in the wintertime and warming in the remaining seasons. Overall, we find that we cannot falsify NorESM as being capable of explaining the observed hiatus behavior. Importantly, this is not equivalent to concluding NorESM could simultaneously capture all important facets of the hiatus. Similar experiments with further, distinct, Earth System Models are required to verify our findings.
-
The glacimarine environment of the Antarctic Peninsula region is one of the fastest warming places on Earth today, but details of changes in the recent past remain unknown. Large distances and widespread variability separate late Holocene palaeoclimate reconstructions in this region. This study focuses on a marine sediment core collected from ca. 2000 m below sea level in the Central Bransfield Strait that serves as a key for understanding changes in this region. The core yielded a high sedimentation rate and therefore provides an exceptional high-resolution sedimentary record composed of hemipelagic sediment, with some turbidites. An age model has been created using radiocarbon dates that span the Late Holocene: 3560 cal yr BP to present. This chronostratigraphic framework was used to establish five units, which are grouped into two super-units: a lower super-unit (3560–1600 cal yr BP) and an upper super-unit (1600 cal yr BP–present), based on facies descriptions, laser particle size analysis, x-ray analysis, multi-sensor core logger data, weight percentages and isotopic values of total organic carbon and nitrogen. We interpret the signal contained within the upper super-unit as an increase in surface water irradiance and/or shortening of the sea-ice season and the five units are broadly synchronous with climatic intervals across the Antarctic Peninsula region. While the general trends of regional climatic periods are represented in the Bransfield Basin core we have examined, each additional record that is obtained adds variability to the known history of the Antarctic Peninsula, rather than clarifying specific trends. Keywords: Antarctic Peninsula; palaeoclimate; Holocene; marine; isotopes.
-
The breakup of Gondwana is manifested by coeval early Jurassic Karoo magmatism in South Africa and East Antarctica. In South Africa, the large volumes of volcanic rocks of the adjoining Lebombo and Mwenetzi-Save monoclines represent a volcanic rift margin, and in East Antarctica, a corresponding feature, the Explora Wedge is buried below sediments and floating ice shelves on the continental margin of Dronning Maud Land. We use the seismic vibrator source to explore the sub-ice geology in Antarctica, and the new seismic reflection and available regional aeromagnetic data enable us to outline a dogleg landward extent of the Explora Wedge in Dronning Maud Land. The congruent inboard wedge geometries on the two continents define a high quality constraint, which facilitate for the first time, a geologically consistent and tight reconstruction of Africa relative to East Antarctica within Gondwana. The uncertainties in correlations of major geological features (mobile belts) from one continent to the other may now be of the order of ten's of kilometers rather than hundreds of kilometers.
Explore
Topic
- geofysikk
- AABW (4)
- akkumulasjon (3)
- alger (1)
- Amundsenhavet (1)
- Antarktis (65)
- antropogenisk CO2 (1)
- astrofysikk (1)
- astronomi (3)
- atmosfæren (16)
- atmosfærisk tidevann (1)
- batymetri (7)
- biogeokjemi (2)
- biografi (1)
- blåis (2)
- Bouvetøya (2)
- breendringer (1)
- brehylle (8)
- bunnvann (3)
- drivhusgasser (2)
- Dronning Maud Land (39)
- ekspedisjoner (8)
- energiske partikler (2)
- film (1)
- fjernanalyse (1)
- fjernmåling (2)
- forskning (3)
- forskningsstasjoner (1)
- fysisk geografi (1)
- fysisk oseanografi (1)
- fytoplankton (1)
- gasskonsentrasjoner (2)
- geodesi (1)
- geografi (3)
- geokjemi (7)
- geologi (28)
- geomagnetiske stormer (6)
- geomorfologi (1)
- georadar (1)
- geostatistikk (1)
- geovitenskap (3)
- glasiologi (38)
- havbølger (1)
- havbunnen (3)
- havet (1)
- havis (9)
- havnivå (1)
- havnivåstigning (3)
- havoppvarming (1)
- havstrømmer (12)
- historie (1)
- hydrografi (7)
- hydrologi (1)
- ingeniørvitenskap (1)
- innlandsis (16)
- ionosfæren (3)
- is (2)
- is radar (1)
- isberg (3)
- isbre (4)
- isbreer (5)
- isbrem (10)
- isfjell (2)
- isfront (1)
- iskjerner (9)
- issfjell (1)
- isshelf (21)
- isstrøm (4)
- istykkelse (1)
- kalv (1)
- kalving (1)
- karbondioksid (1)
- kartografi (1)
- kelvinbølger (1)
- klima (1)
- klimaendringer (8)
- klimagasser (1)
- klimamodeller (7)
- klimatologi (10)
- konferanse (4)
- kontinentalmargin (3)
- kontinentalsokkel (6)
- laboratorieeksperimenter (1)
- litosfæren (1)
- logistikk (1)
- magnetotelluriske eksperimenter (1)
- magnetotelluriske målinger (1)
- marin biologi (2)
- marin geologi (4)
- mekanikk (1)
- mesosfæren (2)
- metanutslipp (1)
- meteorologi (27)
- mikrobølge (1)
- miljøendringer (2)
- mineralogi (1)
- NARE 1976/77 (1)
- NARE 1978/79 (3)
- NARE 1984/85 (3)
- NARE 1989/90 (1)
- NARE 1992/93 (1)
- NARE 1996/97 (1)
- NARE 2000/01 (3)
- NARP 1992/93 (1)
- nedbør (1)
- Norsk Polarinstitutt (1)
- numerisk modellering (2)
- nunataker (1)
- observasjoner (6)
- ornitologi (1)
- oseanografi (39)
- overflatesnø (1)
- ozonhull (3)
- ozonlaget (7)
- paleoklimatologi (4)
- paleontologi (1)
- permafrost (2)
- Peter I. Øy (1)
- planetbølger (1)
- polarlys (1)
- polarområdene (17)
- pyknoklin (1)
- radar observasjoner (1)
- radarundersøkelse (1)
- radioaktivitet (1)
- radiometer (2)
- radiostøy (1)
- romvitenskap (1)
- Rosshavet (3)
- saltinnhold (1)
- satellite (1)
- satellite altimetri (1)
- satellite bilder (1)
- satellitt (1)
- satellitt observasjoner (1)
- sedimenter (1)
- sedimentologi (2)
- seismisk undersøkelse (1)
- seismologi (6)
- sjøis (7)
- smeltevann (1)
- smelting (2)
- snø (1)
- snø akkumulasjon (1)
- snø radar (1)
- snøfall (1)
- solvind (1)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (51)
- Sørishavsstrømmen (2)
- Sørpolen (1)
- stabile isotoper (2)
- stratigrafi (3)
- stratosfæren (1)
- stratosfærisk kjemi (1)
- strømmodeller (1)
- subglasial (1)
- subglasial geologi (1)
- subglasial innsjø (1)
- subglasial topografi (1)
- Sydpolen (2)
- symposium (4)
- teknologi (1)
- tektonikk (6)
- temperatur (1)
- temperatur måling (1)
- tidevann (1)
- tidevannsmålinger (1)
- tidsserieanalyse (1)
- tomografi (1)
- topografi (4)
- Troll forskningsstasjon (2)
- vannmasser (5)
- vannvirvler (2)
- vulkaner (5)
- Weddellhavet (31)
Resource type
- Book (4)
- Book Section (14)
- Conference Paper (1)
- Document (1)
- Journal Article (126)
- Report (2)
- Thesis (3)
Publication year
-
Between 1900 and 1999
(50)
-
Between 1930 and 1939
(1)
- 1939 (1)
-
Between 1940 and 1949
(1)
- 1948 (1)
-
Between 1960 and 1969
(1)
- 1968 (1)
- Between 1970 and 1979 (12)
- Between 1980 and 1989 (16)
- Between 1990 and 1999 (19)
-
Between 1930 and 1939
(1)
- Between 2000 and 2025 (101)