Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 8 resources
-
Active subglacial lakes beneath the Antarctic Ice Sheet provide insights into the dynamic subglacial environment, with implications for ice-sheet dynamics and mass balance. Most previously identified lakes have been found upstream (>100 km) of fast-flowing glaciers in West Antarctica, and none have been found in the coastal region of Dronning Maud Land (DML) in East Antarctica. The regional distribution and extent of lakes as well as their timescales and mechanisms of filling–draining activity remain poorly understood. We present local ice surface elevation changes in the coastal DML region that we interpret as unique evidence of seven active subglacial lakes located under slowly moving ice near the grounding line margin. Laser altimetry data from ICESat-2 and ICESat (Ice, Cloud, and Land Elevation Satellites) combined with multi-temporal Reference Digital Elevation Model of Antarctica (REMA) strips reveal that these lakes actively fill and drain over periods of several years. Stochastic analyses of subglacial water routing together with visible surface lineations on ice shelves indicate that these lakes discharge meltwater across the grounding line. Two lakes are within 15 km of the grounding line, while another three are within 54 km. Ice flows 17–172 m a−1 near these lakes, much slower than the mean ice flow speed near other active lakes within 100 km of the grounding line (303 m a−1). Our results improve knowledge of subglacial meltwater dynamics and evolution in this region of East Antarctica and provide new observational data to refine subglacial hydrological models.
-
The management strategy for the Antarctic krill (Euphausia superba) fishery is being revised. A key aim is to spatially and temporally allocate catches in a manner that minimizes impacts to both the krill stock and dependent predators. This process requires spatial information on the distribution and abundance of krill, yet gaps exist for an important fishing area surrounding the South Orkney Islands in the south Scotia Sea. To fill this need, we create a dynamic distribution model for krill in this region. We used data from a spatially and temporally consistent acoustic survey (2011-2020) and year-specific environmental covariates within a two-part hurdle model. The model successfully captured observed spatial and temporal patterns in krill density. The covariates found to be most important included distance from shelf break, distance from summer sea ice extent, and salinity. The northern and eastern shelf edges of the South Orkney Islands were areas of consistently high krill density and displayed strong spatial overlap between intense fishing activity and foraging chinstrap penguins. High mean krill density was also linked to oceanographic features located within the Weddell Sea. Our data suggest that years in which these features were closer to the South Orkney shelf were also years of positive Southern Annular Mode and higher observed krill densities. Our findings highlight existing fishery?predator?prey overlap in the region and support the hypothesis that Weddell Sea oceanography may play a role in transporting krill into this region. These results will feed into the next phase of krill fisheries management assessment.
-
During the Quaternary, ice sheets experienced several retreat–advance cycles, strongly influencing climate patterns. In order to properly simulate these phenomena, it is preferable to use physics-based models instead of parameterizations to estimate the surface mass balance (SMB), which strongly influences the evolution of the ice sheet. To further investigate the potential of these SMB models, this work evaluates the BErgen Snow SImulator (BESSI), a multi-layer snow model with high computational efficiency, as an alternative to providing the SMB for the Earth system model iLOVECLIM for multi-millennial simulations as in paleostudies. We compare the behaviors of BESSI and insolation temperature melt (ITM), an existing SMB scheme of iLOVECLIM during the Last Interglacial (LIG). Firstly, we validate the two SMB models using the regional climate model Mod- èle Atmosphérique Régional (MAR) as forcing and reference for the present-day climate over the Greenland and Antarctic ice sheets. The evolution of the SMB over the LIG (130–116 ka) is computed by forcing BESSI and ITM with transient climate forcing obtained from iLOVECLIM for both ice sheets. For present-day climate conditions, both BESSI and ITM exhibit good performance compared to MAR despite a much simpler model setup. While BESSI performs well for both Antarctica and Greenland for the same set of parame- ters, the ITM parameters need to be adapted specifically for each ice sheet. This suggests that the physics embedded in BESSI allows better capture of SMB changes across varying climate conditions, while ITM displays a much stronger sen- sitivity to its tunable parameters. The findings suggest that BESSI can provide more reliable SMB estimations for the iLOVECLIM framework to improve the model simulations of the ice sheet evolution and interactions with climate for multi-millennial simulations.
-
The unique challenges of polar ecosystems, coupled with the necessity for high-precision data, make Unmanned Aerial Vehicles (UAVs) an ideal tool for vegetation monitoring and conservation studies in Antarctica. This review draws on existing studies on Antarctic UAV vegetation mapping, focusing on their methodologies, including surveyed locations, flight guidelines, UAV specifications, sensor technologies, data processing techniques, and the use of vegetation indices. Despite the potential of established Machine-Learning (ML) classifiers such as Random Forest, K Nearest Neighbour, and Support Vector Machine, and gradient boosting in the semantic segmentation of UAV-captured images, there is a notable scarcity of research employing Deep Learning (DL) models in these extreme environments. While initial studies suggest that DL models could match or surpass the performance of established classifiers, even on small datasets, the integration of these advanced models into real-time navigation systems on UAVs remains underexplored. This paper evaluates the feasibility of deploying UAVs equipped with adaptive path-planning and real-time semantic segmentation capabilities, which could significantly enhance the efficiency and safety of mapping missions in Antarctica. This review discusses the technological and logistical constraints observed in previous studies and proposes directions for future research to optimise autonomous drone operations in harsh polar conditions.
-
This study compares CL51 ceilometer observations made at Scott Base, Antarctica, with statistics from the ERA5, JRA55, and MERRA2 reanalyses. To enhance the comparison we use a lidar instrument simulator to derive cloud statistics from the reanalyses which account for instrumental factors. The cloud occurrence in the three reanalyses is slightly overestimated above 3 km, but displays a larger underestimation below 3 km relative to observations. Unlike previous studies, we see no relationship between relative humidity and cloud occurrence biases, suggesting that the cloud biases do not result from the representation of moisture. We also show that the seasonal variation of cloud occurrence and cloud fraction, defined as the vertically integrated cloud occurrence, are small in both the observations and the reanalyses. We also examine the quality of the cloud representation for a set of weather states derived from ERA5 surface winds. The variability associated with grouping cloud occurrence based on weather state is much larger than the seasonal variation, highlighting weather state is a strong control of cloud occurrence. All the reanalyses continue to display underestimates below 3 km and overestimates above 3 km for each weather state. But the variability in ERA5 statistics matches the changes in the observations better than the other reanalyses. We also use a machine learning scheme to estimate the quantity of supercooled liquid water cloud from the ceilometer observations. Ceilometer low-level supercooled liquid water cloud occurrences are considerably larger than values derived from the reanalyses, further highlighting the poor representation of low-level clouds in the reanalyses.
-
Water stable isotope records in polar ice cores have been largely used to reconstruct past local temperatures and other climatic information such as evaporative source region conditions of the precipitation reaching the ice core sites. However, recent studies have identified post-depositional processes taking place at the ice sheet's surface, modifying the original precipitation signal and challenging the traditional interpretation of ice core isotopic records. In this study, we use a combination of existing and new datasets of precipitation, snow surface, and subsurface isotopic compositions (δ18O and deuterium excess (d-excess)); meteorological parameters; ERA5 reanalyses; outputs from the isotope-enabled climate model ECHAM6-wiso; and a simple modelling approach to investigate the transfer function of water stable isotopes from precipitation to the snow surface and subsurface at Dome C in East Antarctica. We first show that water vapour fluxes at the surface of the ice sheet result in a net annual sublimation of snow, from 3.1 to 3.7 mm w.e. yr−1 (water equivalent) between 2018 and 2020, corresponding to 12 % to 15 % of the annual surface mass balance. We find that the precipitation isotopic signal cannot fully explain the mean, nor the variability in the isotopic composition observed in the snow, from annual to intra-monthly timescales. We observe that the mean effect of post-depositional processes over the study period enriches the snow surface in δ18O by 3.0 ‰ to 3.3 ‰ and lowers the snow surface d-excess by 3.4 ‰ to 3.5 ‰ compared to the incoming precipitation isotopic signal. We also show that the mean isotopic composition of the snow subsurface is not statistically different from that of the snow surface, indicating the preservation of the mean isotopic composition of the snow surface in the top centimetres of the snowpack. This study confirms previous findings about the complex interpretation of the water stable isotopic signal in the snow and provides the first quantitative estimation of the impact of post-depositional processes on the snow isotopic composition at Dome C, a crucial step for the accurate interpretation of isotopic records from ice cores.
-
Antarctica harbors many distinctive features of life, yet much about the diversity and functioning of Antarctica?s life remains unknown. Evolutionary histories and functional ecology are well understood only for vertebrates, whereas research on invertebrates is largely limited to species descriptions and some studies on environmental tolerances. Knowledge on Antarctic vegetation cover showcases the challenges of characterizing population trends for most groups. Recent community-level microbial studies have provided insights into the functioning of life at its limits. Overall, biotic interactions remain largely unknown across all groups, restricted to basic information on trophic level placement. Insufficient knowledge of many groups limits the understanding of ecological processes on the continent. Remedies for the current situation rely on identifying the caveats of each ecological discipline and finding targeted solutions. Such precise delimitation of knowledge gaps will enable a more aware, representative, and strategic systematic conservation planning of Antarctica.
-
Massive injection of 13C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene. We present geophysical data documenting at least 150 large (km-scale) craters on the modern seafloor across ∼148,000 km2 of Scan Basin in the southern Scotia Sea, a remote region offshore Antarctica. Seismic and bathymetric information reveals the craters relate to vertical fluid pipes extending above dome-shaped forced folds and saucer-shaped igneous sills. Presumably, magmatic intrusions deform overlying sediment and produce thermogenic gas, where buoyant hydrothermal fluids migrate upwards from sill flanks through V-shaped gas chimneys to the seafloor. Fluid expulsion, driven by excess pore pressure, enhances vertical conduits and creates collapse structures on the seafloor. Age estimates for sill emplacement and crater formation come from correlations of seismic reflectors with bore hole data collected on IODP Expedition 382. Sills intruded into sediment at least two times, first about 12–13 Ma (Middle Miocene), which occurred with deep intrusions of stacked composite sills, and once about 0.9 Ma and associated with volcanism along Discovery Bank, which may have reactivated previous fluid venting. Crater reactivation has occurred since 0.9 Ma, although probably episodically. Importantly, at present-day, numerous craters related to sills and fluid pipes populate the seafloor above a young sedimentary basin, and the ocean and atmosphere are receiving massive quantities of 13C depleted carbon. The two phenomena are unrelated but, with changes in global climate and sedimentation, the craters could be filled simultaneously and give an impression in the rock record of rapid and coeval formation coincident with carbon emission. Interpretations of ancient HTVCs and their significance to global carbon cycling needs revision with consideration of modern seafloor regions with HTVCs, notably Scan Basin.
Explore
Topic
- Antarktis (4)
- chronostratigrafi (1)
- dataanalyse (1)
- droner (1)
- Dronning Maud Land (1)
- dyp læring (1)
- ekkolodd (1)
- fiskerier (1)
- fjernmåling (1)
- forskningsstasjoner (1)
- fysisk geografi (1)
- geologi (2)
- glasiologi (1)
- innlandsis (2)
- isstrøm (1)
- kartlegging (1)
- klimaendringer (1)
- klimamodeller (2)
- krill (1)
- kryosfæren (1)
- kunstig intelligens (KI) (1)
- kybernetikk (1)
- marin geologi (1)
- maskinlæring (1)
- meteorologi (1)
- oseanografi (1)
- paleoklimatologi (2)
- plankton (1)
- polarområdene (1)
- satellite altimetri (1)
- Scotiahavet (2)
- Sør-Orknøyene (1)
- Sørishavet (2)
- subglasial innsjø (1)
- teknologi (1)
- vegetasjon (1)
- vulkanologi (1)
- Weddellhavet (1)
Resource type
- Journal Article (8)