Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • The acquisition and interpretation of increasingly high-resolution climate data from polar ice and firn cores motivates the question: What is the finest depth or timescale on which measurements on cores arrayed over a given area correlate? We analyze dated depth series of electrical and oxygen isotope measurements from a spatial array of firn cores with 3.5–7 km spacing in Dronning Maud Land, Antarctica, each with a temporal span of approximately 200 years. We use wavelet analysis to decompose the series into components associated with changes of averages on different scales, and thus deduce which scales are dominated by environmental noise, and which may contain a common signal. We find that common signals in electrical records have timescales of approximately 1–3 years. We identify only one electrical signal which rises significantly above the background in our 200-year records, evidently corresponding to the Tambora eruption. Several smaller signals correlate in a few of pairs of cores, one of which may correspond to a known volcanic event, but the others appear to be spurious. We present a simulation-based method for testing the significance of apparent electrical signal correlations, and highlight the importance of accurate relative dating between cores. In the case of oxygen-isotope records, we find, surprisingly, no significant correlation on any scale in the records, for any of the pairs of cores. There is, however, a weak trend toward positive correlation at longer timescales (up to 16 years). Statistical theory for the relevant confidence intervals and the observed statistics of the records permit estimation of the length of a data series necessary to reliably detect a hypothetical correlation equal to that observed. For the highest correlation observed on 16-year scales, core records of about 380 years (approximately 30 m at the Dronning Maud Land site) would be necessary to establish significance.

  • Constraining the spatial variation of englacial radar attenuation is critical for accurate inference of the spatial variation of the englacial and basal properties of ice sheets from radar returned power. Here we evaluate attenuation models that account for spatial variations in ice temperature and chemistry and test them along the flowline that passes through the Vostok ice core site, Antarctica. The simplest model, often used but rarely valid, assumes a uniform attenuation rate everywhere along the flowline, so that total attenuation is proportional to ice thickness. The next simplest model uses spatially varying temperatures predicted by an ice-flow model and assumes uniform chemistry. Additional models account for spatially varying chemistry using englacial stratigraphy. We find that the roundtrip attenuation to the bed can easily differ by 10 dB or more between the uniform attenuation-rate model and models that account for variable ice temperature. Such differences are sufficient to confound the delineation of dry and wet beds. Also including spatial variations in chemistry produces smaller differences (<10 dB), but the magnitude of these differences depends on the relative importance of dry and wet deposition of impurities in the past. Accounting for dry-deposited impurities requires ice-flow modeling and results in larger differences from all other models, which assume uniform chemistry or wet deposition only. These results indicate that modeling the spatial variation of attenuation requires a spatially varying temperature model in order to infer bed conditions from bed returned power accurately, and that both ice core data and radar stratigraphy are also strongly desirable.

Last update from database: 11/1/24, 3:10 AM (UTC)