Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 9 resources
-
In birds, the characteristics of the nest site may affect reproductive success. We found that shelter is an important characteristic of the Antarctic petrel (Thalassoica antarctica) nests because shelter prevents chick predation. However, the benefit of shelter was countervailed by melt water which mainly entered well-sheltered nests. Chick survival was monitored until the chick was left unattended for the first time. Late-hatched chicks had a higher survival probability than early-hatched chicks, possibly because late hatchers swamp the predator, the south polar skua (Catharacta maccormicki). Poorly sheltered nests tended to be occupied by parents with low body mass and late-hatched eggs. The results suggest that both shelter per se and parental characteristics may explain the relationship between predation risk and shelter. We need experiments to study the influence of nest site on reproductive success, and we need to map the frequency of melt water as a cause of reproductive failure.
-
Life histories are state-dependent, and an individual's reproductive decisions are determined by its available resources and the needs of its offspring. Here we test how a chick's needs for food and protection influence parental decisions in the Antarctic petrel, Thalassoica antarctica, where the parents, due to their long breeding lifespan, are expected to give priority to their own needs before those of the young. We exchanged one-day-old chicks with four-day-old chicks and studied how the parents subsequently provided care to the chick. The duration of the guarding period was adjusted, and parents left older chicks earlier and younger chicks later compared to controls. Three mechanisms were responsible for the adjustments. 1) Parents with an older chick co-ordinated fewer guarding spells whereas parents with a younger chick co-ordinated more guarding spells. 2) At the last guarding spell, i.e. where a parent left the chick alone before the partner returned, less time was spent with older chicks, and more time with younger chicks. 3) Foraging trip duration was shortened by parents given older chicks and prolonged by parents given younger chicks, probably in response to the chick's food demand. Hence, the parents responded quickly to the altered needs of the chick. Parents with high body mass guarded longer and were better able to co-ordinate the guarding spells compared to lighter parents. In conclusion, Antarctic petrels adjust reproductive decisions to their own, their mate's, and their chick's state, and they seem to respond to the chick's needs for both food and protection.
-
Different organochlorine compounds (OCs) were measured in the blood of breeding south polar skuas (Catharacta maccormicki) at Svarthamaren, Dronning Maud Land (Antarctica) and compared to those in two species of northern hemisphere gulls: the Arctic glaucous gull (Larus hyperboreus) and the subarctic great black-backed gull (Larus marinus). The skuas had 8% and 29% of the ∑OC levels (45 ng/g, wet weight) of glaucous gulls (591 ng/g) and great black-backed gulls (158 ng/g), respectively. Polychlorinated biphenyls (PCBs) and p,p‘-dichlorodiphenyldichloroethylene (p,p‘-DDE) were very low in skuas compared to northern gulls, but the mean hexachlorobenzene (HCB) level was 1.7 times higher than in great black-backed gulls and one-third of the glaucous gull level. Mirex levels in skuas were among the highest reported in birds, the mean level being 3 and 26 times higher than those in glaucous gull and great black-backed gulls, respectively. In skuas, the mean levels of HCB, oxychlordane, p,p‘-DDE, and PCBs increased by about 30% during a 2-week period, and mirex increased by nearly 60%. In glacuous gulls, HCB, p,p‘-DDE, and PCBs increased by 10−20%. For HCB, mirex, and oxychlordane, only a relatively small proportion of the increase in skuas could be explained by changes in lipid pools and the levels at first sampling, compared to glaucous gulls. Thus, skuas were probably accumulating these compounds when present in Antarctica. p,p‘-DDE and PCB levels, in contrast, seemed much more stable in the skuas. Relatively high levels of mirex and HCB in south polar skuas are concerning with regard to potential adverse effects.
-
In polar seas, the seasonal melting of ice triggers the development of an open-waterecosystem characterized by short-lived algal blooms, the grazing and development of zooplank-ton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of icemelt generates temporal variability in the development of these events across the habitat, offeringa natural framework to assess how foraging marine predators respond to the spring phenology.We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarcticawith synopticremote-sensing data on sea ice and chlorophyll ato test how the development of melting ice andprimary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passagetime revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. Theseareas changed position or disappeared within 10 to 30 d and showed no spatial consistency amongyears. Generalized additive model (GAM) analyses suggested that the presence of foraging areaswas related to the time since ice melt. Antarctic petrels concentrated their search effort in meltingareas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found nosignificant relationship between search effort and chlorophyll aconcentration. We suggest thatthese foraging patterns were related to the vertical distribution and profitability of the main prey,the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in theSouthern Ocean shapes the development of a highly patchy and elusive food web, underscoringthe importance of flexible foraging strategies among top predators. KEY WORDS: Area-restricted search · Euphausia superba· Marginal ice zone · Phytoplanktonbiomass · Procellariiformes · Sea ice dynamics · Southern Ocean · Thalassoica antarctica
-
Kommersielle fiskerier kan påvirke marine økosystemer og bestander av topp-predatorer som sjøfugl. I Sørishavet foregår et ekstensivt fiske etter Antarktisk krill (Euphausia superba), og dette er antatt å øke. En sammenligning av fordeling og uttak hos fiskeriene og tilsvarende hos topp-predatorene er nødvendig for å forutsi fiskerirelaterte påvirkninger på krillavhengige predatorer. I dette studiet kartla vi næringssøksområdene hos Antarktispetrell (Thalassoica antarctica) som hekker i verdens største koloni (Svarthammaren, Dronning Maud land) over en treårsperiode. Vi fant at det romlige overlappet mellom krillfiskerier og næringssøkende Antarktispetrell generelt var lite. Konkurranse mellom Antarktispetrell og krill-fiskerier er for tiden neglisjerbart, men kan øke hvis fiskeriet etter krill øker.
-
Abstract Individual heterogeneity in diet and foraging behaviour is common in wild animal populations, and can be a strong determinant of how populations respond to environmental changes. Within populations, variation in foraging behaviour and the occurrence of individual tactics in relation to resources distribution can help explain differences in individual fitness, and ultimately identify important factors affecting population dynamics. We examined how foraging behaviour and habitat during the breeding period related to the physiological state of a long-ranging seabird adapted to sea ice, the Antarctic petrel Thalassoica antarctica. Firstly, using GPS tracking and state-switching movement modelling (hidden Markov models) on 124 individual birds, we tested for the occurrence of distinct foraging tactics within our study population. Our results highlight a large variation in the movement and foraging behaviour of a very mobile seabird, and delineate distinct foraging tactics along a gradient from foraging in dense pack ice to foraging in open water. Secondly, we investigated the effects of these foraging tactics on individual state at return from a foraging trip. We combined movement data with morphometric and physiological measurements of a suite of plasma metabolites that provided a general picture of a bird's individual state. Foraging in denser sea ice was associated with lower gain in body mass during brooding, as well as lower level of energy acquisition (plasma triacylglycerol) during both brooding and incubation. We found no clear relationship between the foraging tactic in relation to sea ice and the energetic stress (changes in plasma corticosterone), energetic balance (β-hydroxybutyrate) or trophic level (δ15N). However, a shorter foraging range was related to both the energetic balance (positively) and the trophic level (negatively). Our results highlight a diverse range of foraging tactics in relation to sea ice in Antarctic petrels. While the various foraging tactics do not seem to strongly alter energetic balance, they may affect other aspects of Antarctic petrels' physiology. Future changes in sea-ice habitats can thus be expected to have an impact on the individual state of seabirds such as Antarctic petrels, which could ultimately affect their population dynamics. Nonetheless, strong individual heterogeneity in the use of sea-ice habitats by a typical pagophilic species might strengthen its resilience to environmental changes and in particular to forecasted sea-ice loss. A free Plain Language Summary can be found within the Supporting Information of this article.
Explore
Topic
- Antarktis (1)
- biologi (1)
- biomasse (1)
- Dronning Maud Land (5)
- fenologi (1)
- fiskeriforvaltning (1)
- fôring (3)
- forurensning (1)
- fugler (3)
- fytoplankton (1)
- havis (2)
- kjemiske analyser (1)
- klima (1)
- krill (1)
- marin biologi (2)
- marinbiologi (1)
- miljø (1)
- miljøendringer (1)
- NARE 2000/01 (2)
- observasjoner (2)
- økologi (3)
- økosystem (1)
- økosystemer (1)
- ornitologi (8)
- petreller (6)
- polarområdene (2)
- reproduksjon (2)
- sjøfugler (3)
- sjøis (2)
- smelting (2)
- Sørishavet (4)
- Weddellhavet (1)
- zoologi (5)
Resource type
- Book Section (1)
- Journal Article (8)