Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 2 resources
-
Sea ice forms a barrier to the exchange of energy, gases, moisture and particles between the ocean and atmosphere around Antarctica. Ice temperature, salinity and the composition of ice crystals determine whether a particular slab of sea ice is habitable for microorganisms and permeable to exchanges between the ocean and atmosphere, allowing, for example, carbon dioxide (CO2) from the atmosphere to be absorbed or outgassed by the ocean. Spring sea ice can have high concentrations of algae and absorb atmospheric CO2. In the summer of 2016?2017 off East Antarctica, we found decayed and porous granular ice layers in the interior of the ice column, which showed high algal pigment concentrations. The maximum chlorophyll a observed in the interior of the ice column was 67.7 ?g/L in a 24% porous granular ice layer between 0.8 and 0.9 m depth in 1.7 m thick ice, compared to an overall mean sea-ice chlorophyll a (± one standard deviation) of 13.5 ± 21.8 ?g/L. We also found extensive surface melting, with instances of snow meltwater apparently percolating through the ice, as well as impermeable superimposed ice layers that had refrozen along with melt ponds on top of the ice. With future warming, the structures we describe here could occur earlier and/or become more persistent, meaning that sea ice would be more often characterized by patchy permeability and interior ice algal accumulations.
-
Surface mass balance (SMB) of the Antarctic Ice Sheet must be better understood to document the current Antarctic contribution to sea-level rise. In situ point data using snow stakes and ice cores are often used to evaluate the state of the ice sheet's mass balance, as well as to assess SMB derived from regional climate models, which are then used to produce future climate projections. However, spatial representativeness of individual point data remains largely unknown, particularly in the coastal regions of Antarctica with highly variable terrain. Here, we compare ice core data collected at the summit of eight ice rises along the coast of Dronning Maud Land, as well as at the Dome Fuji site, and shallow ice-penetrating radar data over these regions. Shallow radar data have the advantage of being spatially extensive, with a temporal resolution that varies between a yearly and multi-year resolution, from which we can derive a SMB record over the entire radar survey. This comparison therefore allows us to evaluate the spatial variability of SMB and the spatial representativeness of ice-core-derived SMB. We found that ice core mean SMB is very local, and the difference with radar-derived SMB increases in a logarithmic fashion as the surface covered by the radar data increases, with a plateau ∼ 1–2 km away from the ice crest for most ice rises, where there are strong wind–topography interactions, and ∼ 10 km where the ice shelves begin. The relative uncertainty in measuring SMB also increases rapidly as we move away from the ice core sites. Five of our ice rise sites show a strong spatial representativeness in terms of temporal variability, while the other three sites show that it is limited to a surface area between 20–120 km2. The Dome Fuji site, on the other hand, shows a small difference between pointwise and area mean SMB, as well as a strong spatial representativeness in terms of temporal variability. We found no simple parameterization that could represent the spatial variability observed at all the sites. However, these data clearly indicate that local spatial SMB variability must be considered when assessing mass balance, as well as comparing modeled SMB values to point field data, and therefore must be included in the estimate of the uncertainty of the observations.
Explore
Topic
- biogeokjemi (1)
- Dronning Maud Land (1)
- glasiologi (1)
- havis (1)
- isfjell (1)
- isshelf (1)
- smelting (1)
- Sørishavet (1)
Resource type
- Journal Article (2)
Publication year
-
Between 2000 and 2025
(2)
-
Between 2020 and 2025
(2)
- 2023 (2)
-
Between 2020 and 2025
(2)
Online resource
- yes (2)