Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • Energetic electron precipitation (EEP) is an important source of polar nitrogen oxides (NOx) in the upper atmosphere. During winter, mesospheric NOx has a long chemical lifetime and is transported to the stratosphere by the mean meridional circulation. Climate change is expected to accelerate this circulation and therefore increase polar mesospheric descent rates. We investigate the Southern Hemispheric polar NOx distribution during the 21st century under a variety of future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). We simulate stronger polar mesospheric descent in all future scenarios that increase the atmospheric radiative forcing. Polar NOx in the upper stratosphere is significantly enhanced in two future scenarios with the largest increase in radiative forcing. This indicates that the ozone depleting NOx cycle will become more important in the future, especially if stratospheric chlorine species decline. Thus, EEP-related atmospheric effects may become more prominent in the future.

  • Sudden Stratospheric Warmings (SSW) affect the chemistry and dynamics of the middle atmosphere. Major warmings occur roughly every second winter in the Northern Hemisphere (NH), but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board Envisat) during this rare event, show a 40% increase of ozone in the nighttime secondary ozone layer at subpolar latitudes compared to non-SSW years. This study investigates the cause of the mesospheric nighttime ozone increase, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (SD-WACCM). The 2002 SH winter was characterized by several reductions of the strength of the polar night jet in the upper stratosphere before the jet reversed completely, marking the onset of the major SSW. At the time of these wind reductions, corresponding episodic increases can be seen in the modelled nighttime secondary ozone layer. This ozone increase is attributed largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. This is in correspondence to similar studies of SSW induced ozone enhancements in NH. But unlike its NH counterpart, the SH secondary ozone layer appeared to be impacted less by episodic variations in atomic hydrogen. Seasonally decreasing atomic hydrogen plays however a larger role in SH compared to NH.

  • While observed mesospheric polar nitric acid enhancements have been attributed to energetic particle precipitation through ion cluster chemistry in the past, this phenomenon is not reproduced in current whole-atmosphere chemistry-climate models. We investigate such nitric acid enhancements resulting from energetic electron precipitation events using a recently developed variant of the Whole Atmosphere Community Climate Model (WACCM) that includes a sophisticated ion chemistry tailored for the D-layer of the ionosphere (50–90 km), namely, WACCM-D. Using the specified dynamics mode, that is, nudging dynamics in the troposphere and stratosphere to meteorological reanalyses, we perform a 1-year-long simulation (July 2009–June 2010) and contrast WACCM-D with the standard WACCM. Both WACCM and WACCM-D simulations are performed with and without forcing from medium-to-high energy electron precipitation, allowing a better representation of the energetic electrons penetrating into the mesosphere. We demonstrate the effects of the strong particle precipitation events which occurred during April and May 2010 on nitric acid and on key ion cluster species, as well as other relevant species of the nitrogen family. The 1-year-long simulation allows the event-related changes in neutral and ionic species to be placed in the context of their annual cycle. We especially highlight the role played by medium-to-high energy electrons in triggering ion cluster chemistry and ion-ion recombinations in the mesosphere and lower thermosphere during the precipitation event, leading to enhanced production of nitric acid and raising its abundance by 2 orders of magnitude from 10−4 to a few 10−2 ppb.

Last update from database: 6/26/24, 9:10 AM (UTC)