Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • The coast-parallel Dronning Maud Land (DML) mountains represent a key nucleation site for the protracted glaciation of Antarctica. Their evolution is therefore of special interest for understanding the formation and development of the Antarctic ice sheet. Extensive glacial erosion has clearly altered the landscape over the past 34 Myr. Yet, the total erosion still remains to be properly constrained. Here, we investigate the power of low-temperature thermochronology in quantifying glacial erosion in-situ. Our data document the differential erosion along the DML escarpment, with up to c. 1.5 and 2.4 km of erosion in western and central DML, respectively. Substantial erosion at the escarpment foothills, and limited erosion at high elevations and close to drainage divides, is consistent with an escarpment retreat model. Such differential erosion suggests major alterations of the landscape during 34 Myr of glaciation and should be implemented in future ice sheet models.

  • The paleo-topography of East Antarctica is highly relevant for the development of the East Antarctic ice-sheet. It is likely that the 1500 km long, coast-parallel Dronning Maud Land Mountains have resulted in a significant amount of precipitation prior to the initiation of the 34 Ma glaciation history of East Antarctica. Due to this, the paleo-topography should be used as an important input parameter for the glaciation history. The amount of quantitative measurements for the exhumation history of Antarctica is very limited as 98% of the continent is covered by ice. However, since the onset of thermochronological studies in the Dronning Maud Land Mountains in 1992, the area has been a subject of several thermochronological studies. The first thermochronological studies from Heimefrontfjella and Mannefjellknausane recorded a Jurassic thermal event associated with the Jurassic flood basalts related to the Karoo mantle plume and the rifting between East Antarctica and East Africa. Thermochronological data from Heimefrontfjella and Mannefjellknausane published by Jacobs and Lisker (1999) indicated that the Mesoproterozoic basement and the Permian sandstones were covered by 2000 meters of Jurassic flood basalt. In the Mühlig-Hofmann Mountains and the Gjelsvikfjella to the E, no significant Jurassic thermal event have been recorded. However, a combined titanite and apatite study by Emmel, et al. (2009) did not record any significant Jurassic thermal event in the Gjelsvikfjella and Mühlig-Hofmann Mountains. This has been used as a constraint for the lateral extent of the flood basalts. Also, the thermochronological analyses presented in Jacobs and Lisker (1999) indicated that the AFT ages get progressively older towards the SE. Based on these analyses; paleo-isotherms dipping towards the SE were suggested. In addition to the already published data, new, unpublished AHe data from a transect of the northern part of Jutulstraumen show relatively young ages at the rift flanks (~50 Ma) and progressively older ages further away from the rift flanks, indicating significant Cenozoic erosion (Ksienzyk et al., unpublished data). This is the basis for presently ongoing thermochronological studies.

  • The East Antarctic Ice Sheet (EAIS) is generally assumed to have been relatively insensitive to Quaternary climate change. However, recent studies have shown potential instabilities in coastal, marine sectors of the EAIS. In addition, long-term climate reconstructions and modelling experiments indicate the potential for significant changes in ice volume and ice sheet configuration since the Pliocene. Hence, more empirical evidence for ice surface and ice volume changes is required to discriminate between contrasting inferences. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration focused on improving ice sheet models by filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes along the western Dronning Maud Land (DML) margin and combining this with advances in numerical techniques. Here, we report cosmogenic multi-nuclide data from bedrock and erratics at 72 sample locations on nunatak ranges from Heimefrontfjella to along Penck-Jutulstraumen ice stream throughs in western Dronning Maud Land. The sample locations span elevations between 741-2437 m above sea level, and record apparent exposure ages between <2 ka and >5 Ma. The highest bedrock samples, from high on the inland nunatak ranges, indicate continuous exposure since >5 Ma, with a very low erosion rate of 15±3 cm Ma-1. These results indicate that the ice sheet has not extensively buried and eroded these mountain ranges since at least the Pliocene Moreover, and in contrast to current studies in eastern Dronning Maud Land, we record clear indications of a thicker-than-present ice sheet along the Penck-Jutulstraumen throughs within the last glacial cycle, with a thinning of ~35-120 m towards the present ice surface on several nunataks during the Holocene (~2-11 ka). These results thus indicate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle.

  • The paleo-topography of East Antarctica is highly relevant for the development of the East Antarctic ice-sheet. This ice-sheet originated probably as small ice caps and in the elevated areas of the cratons in East Antarctica around the Eocene/Oligocene boundary. East Antarctica contains three mountain ranges: the latitudinal Dronning Maud Land Mountains (DML), the longitudinal Transantarctic Mountains (TAM) and the sub-glacial Gamburtsev Mountains (GM). The 1500 km long, coast-parallel Dronning Maud Land Mountains probably resulted in a significant amount of precipitation prior to the initiation of the 34 Ma glaciation history of East Antarctica. Thus, the paleo-topography should be used as an important input parameter for the glaciation history.

Last update from database: 6/26/24, 9:10 AM (UTC)