Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
To investigate the role of tides in Weddell Sea ocean-ice shelf melt interactions, and resulting consequences for ocean properties and sea ice interactions, we develop a regional ocean-sea ice model configuration, with time-varying ocean boundary and atmospheric forcing, including the deep open ocean (at 2.5–4 km horizontal resolution), the southwestern continental shelf (≈2.5 km), and the adjacent cavities of eastern Weddell, Larsen, and Filchner-Ronne ice shelves (FRIS, 1.5–2.5 km). Simulated circulation, water mass, and ice shelf melt properties compare overall well with available open ocean and cavity observational knowledge. Tides are shown to enhance the kinetic energy of the time-varying flow in contact with the ice shelves, thereby increasing melt. This dynamically driven impact of tides on net melting is to almost 90% compensated by cooling through the meltwater that is produced but not quickly exported from regions of melting in the Weddell Sea cold-cavity regime. The resulting systematic tide-driven enhancement of both produced meltwater and its refreezing on ascending branches of, especially the FRIS, cavity circulation acts to increase net ice shelf melting (by 50% in respect to the state without tides, ≈50 Gt yr−1). In addition, tides also increase the melt-induced FRIS cavity circulation, and the meltwater export by the FRIS outflow. Simulations suggest attendant changes on the open-ocean southwestern continental shelf, characterized by overall freshening and small year-round sea ice thickening, as well as in the deep southwestern Weddell Sea in the form of a marked freshening of newly formed bottom waters.
-
Antarctic Bottom Water (AABW) is pivotal for oceanic heat and carbon sequestrations on multidecadal to millennial timescales. The Weddell Sea contributes nearly a half of global AABW through Weddell Sea Deep Water and denser underlying Weddell Sea Bottom Water that form on the continental shelves via sea-ice production. Here we report an observed 30% reduction of Weddell Sea Bottom Water volume since 1992, with the largest decrease in the densest classes. This is probably driven by a multidecadal reduction in dense-water production over southern continental shelf associated with a >40% decline in the sea-ice formation rate. The ice production decrease is driven by northerly wind trend, related to a phase transition of the Interdecadal Pacific Oscillation since the early 1990s, superposed by Amundsen Sea Low intrinsic variability. These results reveal key influences on exported AABW to the Atlantic abyss and their sensitivity to large-scale, multidecadal climate variability.
-
The transport of oceanic heat towards the Antarctic continental margin is central to the mass balance of the Antarctic Ice Sheet. Recent modeling efforts challenge our view on where and how the on-shelf heat flux occurs, suggesting that it is largest where dense shelf waters cascade down the continental slope. Here we provide observational evidence supporting this claim. Using records from moored instruments, we link the downslope flow of dense water from the Filchner overflow to upslope and on-shelf flow of warm water.
-
Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABW’s key role in regulating Earth’s climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope where in situ measurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, where in situ observations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system.
Explore
Topic
- brehylle (1)
- bunnvann (1)
- geofysikk (1)
- havis (2)
- isbrem (1)
- isfront (1)
- isshelf (2)
- klimaendringer (1)
- klimamodeller (1)
- klimatologi (1)
- oseanografi (5)
- sjøis (1)
- Sørishavet (5)
- tidevann (1)
- Weddellhavet (2)
Resource type
- Journal Article (5)
Publication year
-
Between 2000 and 2025
(5)
-
Between 2010 and 2019
(1)
- 2018 (1)
- Between 2020 and 2025 (4)
-
Between 2010 and 2019
(1)
Online resource
- yes (5)