Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 8 resources
-
Multiyear time series of ocean current and temperatures from beneath Filchner-Ronne Ice Shelf, Antarctica, demonstrate both seasonal and interannual variability. The seasonal signal is visible at all measurement sites, although it was swamped for a 2-year period (1999–2001) when extraordinarily light sea-ice cover in the southern Weddell Sea during the 1997–1998 Austral summer caused an anomalously large pulse of High Salinity Shelf Water to flush beneath the ice shelf. The pulse was observed twice at an instrumented site near the Berkner Island coast, once on its way to the Filchner Depression and once after the signal had propagated around the depression and returned to the site as an anomalously large pulse of Ice Shelf Water. The timings of the signal allow an estimate of 24–30 months for the flushing timescales of the sub-ice shelf ocean cavity, indicating that the cavity is highly responsive to external forcing. A timescale for the full ventilation of the cavity of 4–5 years is obtained from the length of time the sub-ice shelf conditions take to return to their original state, a timescale significantly shorter than previous estimates.
-
We have made oceanographic measurements at two sites beneath the southern Filchner-Ronne Ice Shelf. Hot-water drilled access holes were made during January 1999, allowing conductivity-temperature-depth (CTD) profiling and the deployment of instrument moorings. The CTD profiles show that the entire water column is below the surface freezing point. We estimate the (summer) flux of water between the two sites to be 2×106 m3 s−1. The summer potential temperature-salinity properties of the water column suggest that this flow is part of a recirculation in the deepest part of the subice shelf cavity and the Filchner Depression. The recirculation is driven by a combination of the melting of deep basal ice and the freezing that results from the depressurization of the cold buoyant water as it ascends the ice shelf base. The source of the water was high-salinity shelf water (HSSW) produced in the Ronne Depression. This is the water that provides the external heat necessary for the strong melting at the deep grounding lines in the vicinity of Foundation Ice Stream. Instruments moored at the drill sites show that during the winter HSSW formed on the Berkner Shelf flows beneath the ice shelf and largely displaces the recirculating water from the two sites. This provides an externally driven through flow that is warmer (nearer the surface freezing point) and slower than the internal recirculation and which is low enough in density to escape the Filchner Depression.
-
We use new data from the southern Weddell Sea continental shelf to describe water mass conversion processes in a formation region for cold and dense precursors of Antarctic Bottom Water. The cruises took place in early 1995, 1998, and 1999, and the time series obtained from moored instruments were up to 30 months in length, starting in 1995. We obtained new bathymetric data that greatly improve our definition of the Ronne Depression, which is now shown to be limited to the southwestern continental shelf and so cannot act as a conduit to northward flow from Ronne Ice Front. Large-scale intrusions of Modified Warm Deep Water (MWDW) onto the continental shelf occur along much of the shelf break, although there is only one location where the MWDW extends as far south as Ronne Ice Front. High-Salinity Shelf Water (HSSW) produced during the winter months dominates the continental shelf in the west. During summer, Ice Shelf Water (ISW) exits the subice cavity on the eastern side of the Ronne Depression, flows northwest along the ice front, and reenters the cavity at the ice front's western limit. During winter the ISW is not observed in the Ronne Depression north of the ice front. The flow of HSSW into the subice cavity via the Ronne Depression is estimated to be 0.9 ± 0.3 Sv. When combined with inflows along the remainder of Ronne Ice Front (reported elsewhere), sufficient heat is transported beneath the ice shelf to power an average basal melt rate of 0.34 ± 0.1 m yr−1.
-
Cold shelf waters flowing out of the Filchner Depression in the southern Weddell Sea make a significant contribution to the production of Weddell Sea Bottom Water (WSBW), a precursor to Antarctic Bottom Water (AABW). We use all available current meter records from the region to calculate the flux of cold water (<−1.9°C) over the sill at the northern end of the Filchner Depression (1.6 ± 0.5 Sv), and to determine its fate. The estimated fluxes and mixing rates imply a rate of WSBW formation (referenced to −0.8°C) of 4.3 ± 1.4 Sv. We identify three pathways for the cold shelf waters to enter the deep Weddell Sea circulation. One path involves flow constrained to follow the shelf break. The other two paths are down the continental slope, resulting from the cold dense water being steered northward by prominent ridges that cross the continental slope near 36°W and 37°W. Mooring data indicate that the deep plumes can retain their core characteristics to depths greater than 2000 m. Probably aided by thermobaricity, the plume water at this depth can flow at a speed approaching 1 m s−1, implying that the flow is occasionally supercritical. We postulate that such supercriticality acts to limit mixing between the plume and its environment. The transition from supercritical to slower, more uniform flow is associated with very efficient mixing, probably as a result of hydraulic jumps.
-
The Filchner-Ronne Ice Shelf, the ocean cavity beneath it, and the Weddell Sea that bounds it, form an important part of the global climate system by modulating ice discharge from the Antarctic Ice Sheet and producing cold dense water masses that feed the global thermohaline circulation. A prerequisite for modeling the ice sheet and oceanographic processes within the cavity is an accurate knowledge of the sub-ice sheet bedrock elevation, but beneath the ice shelf where airborne radar cannot penetrate, bathymetric data are sparse. This paper presents new seismic point measurements of cavity geometry from a particularly poorly sampled region south of Berkner Island that connects the Filchner and Ronne ice shelves. An updated bathymetric grid formed by combining the new data with existing data sets reveals several new features. In particular, a sill running between Berkner Island and the mainland could alter ocean circulation within the cavity and change our understanding of paleo-ice stream flow in the region. Also revealed are deep troughs near the grounding lines of Foundation and Support Force ice streams, which provide access for seawater with melting potential. Running an ocean tidal model with the new bathymetry reveals large differences in tidal current velocities, both within the new gridded region and further afield, potentially affecting sub-ice shelf melt rates.
Explore
Topic
- AABW (1)
- Antarktis (3)
- batymetri (1)
- brehylle (1)
- geofysikk (3)
- havstrømmer (4)
- innlandsis (1)
- isbrem (1)
- isshelf (6)
- klima (1)
- kontinentalsokkel (2)
- kontinentalsokler (1)
- oseanografi (8)
- sjøvann (1)
- sjøvirvler (1)
- Sørishavet (5)
- tidevann (1)
- vannvirvler (1)
- Weddellhavet (6)
Resource type
- Journal Article (8)
Publication year
Online resource
- yes (8)