Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
The Holocene climate is simulated in a 9000-yr-long transient experiment performed with the ECBilt-CLIO-VECODE coupled atmosphere-sea ice-ocean-vegetation model. This experiment is forced with annually varying orbital parameters and atmospheric concentrations of CO2 and CH4. The objective is to study the impact of these long-term forcings on the surface temperature evolution during different seasons in the high-latitude Southern Hemisphere. We find in summer a thermal optimum in the midHolocene (6-3 ka BP), with temperatures locally 3°C above the preindustrial mean. In autumn the temperatures experienced a long-term increase, particularly during the first few thousand years. The opposite trend was simulated for winter and spring, with a relatively warm Southern Ocean at 9 ka BP in winter (up to 3.5°C above the preindustrial mean) and a warm continent in spring (+3°C), followed by a gradual cooling towards the present. These long-term temperature trends can be explained by a combination of (1) a delayed response to orbital forcing, with temperatures lagging insolation by 1 to 2 months owing to the thermal inertia of the system, and (2) the long memory of the Southern Ocean. This long memory is related to the storage of the warm late winter-spring anomaly below the shallower summer mixed layer until next winter. Sea ice plays an important role as an amplifying factor through the ice-albedo and ice-insulation feedbacks. Our experiments can help to improve our understanding of the Holocene signal in proxies. For instance, the results suggest that, in contrast to recent propositions, teleconnections to the Northern Hemisphere appear not necessarily to explain the history of Southern Hemisphere temperature changes during the Holocene.
-
In central Antarctica, where accumulation rates are very low, summer sublimation of surface snow is a key element of the surface mass balance, but its fingerprint in isotopic composition of water (δD, δ18O, and δ17O) remains unclear. In this study, we examined the influence of summer sublimation on δD, δ18O, and δ17O in precipitation using data sets of isotopic composition of precipitation at various sites on the inland East Antarctica. We found unexpectedly low δ18O values in the summer precipitation, decoupled from surface air temperatures. This feature can be explained by the combined effects of weak or nonexistent temperature inversion and moisture recycling associated with sublimation-condensation processes in summer. Isotopic fractionation during the moisture-recycling process also explains the observed high values of d-excess and 17O-excess in summer precipitation. Our results suggest that the local cycle of sublimation-condensation in summer is an important process for the isotopic composition of surface snow, water vapor, and consequently precipitation on inland East Antarctica.
-
We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.
-
The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.
Explore
Topic
- Antarktis (3)
- atmosfæren (1)
- Dronning Maud Land (1)
- geofysikk (1)
- glasiologi (1)
- holocene (1)
- iskjerner (2)
- klimaendringer (1)
- klimagasser (1)
- klimamodeller (1)
- klimatologi (1)
- meteorologi (1)
- paleoklimatologi (3)
- Sørishavet (2)
- stabile isotoper (2)
Resource type
- Journal Article (4)
Publication year
Online resource
- yes (4)