Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 19 resources
-
Our study makes use of a fortuitous oceanographic data set collected around the remote sub-Antarctic island of Bouvetøya by a conductivity–temperature–depth recorder (CTD) integrated with a satellite-relayed data logger deployed on an adult female southern elephant seal (Mirounga leonina) to describe the seasonal evolution of the western shelf waters. The instrumented seal remained in waters over the shelf for 259 days, collecting an average of 2.6 (±0.06) CTD profiles per day, providing hydrographic data encompassing the late austral summer and the entire winter. These data document the thermal stratification of the upper water layer due to summer surface heating of the previous year's Antarctic Surface Water, giving way to a cold subsurface layer at about 100 m as the austral winter progressed, with a concomitant increase in salinity of the upper layer. Upper Circumpolar Deep Water was detected at a depth of approximately 200 m along the western shelf of Bouvetøya throughout the year. These oceanographic data represent the only seasonal time series for this region and the second such animal–instrument oceanographic time series in the sub-Antarctic domain of the Southern Ocean.
-
Bycatch of nontarget species can contribute to overfishing and slow efforts to rebuild fish stocks. Controlling bycatch is fundamental to sustainable fishing and maintaining healthy populations of target species. The Antarctic krill (Euphausia superba) fishery is the largest volume fishery in the Southern Ocean. Understanding the significance of bycatch and its diversity is critical to managing this keystone species. Registered bycatch data from the Antarctic krill fishery in the southwest Atlantic sector of the Southern Ocean were analysed. Observers collected data following an internationally agreed method during the 2010–2020 fishing seasons, with a 20 (± 9) % coverage of fishing activity of Total catch of Antarctic krill which increased from 200,000 tonnes to 450,000 tonnes, with the greatest increase over the last 3 years. Except in 2010 (2.2%), the bycatch ratio was stable and ranged 0.1–0.3%. Fish dominated the bycatch, followed by tunicates and other crustaceans. Observer coverage was high, and bycatch levels were generally low across gear types. Given that accurate information on bycatch is important for sustaining developing fisheries, maintaining high observer coverage of this fishery will be important for detecting impacts from a warming climate and for moving back into historical fishing grounds.
-
The Antarctic fur seal (Arctocephalus gazella) is a key marine predator in the Southern Ocean, a region that has recently started to show changes as a result of global climate change. Here, carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope analyses on whole blood and plasma samples were used to examine the isotopic niche of lactating female Antarctic fur seals. Using recently developed Bayesian approaches to determine changes in isotopic niche, a significant increase in δ 13 C and δ 15 N was found between 1997 and 2015; this change occurred at an average rate of 0.067‰ (δ 13 C) and 0.072‰ (δ 15 N) per year over this period. This suggests that a marked isotopic niche shift has occurred over this period, which very likely corresponds to a shift in diet towards prey at a higher trophic level, such as fish (replacing krill). Although our sampling design prevented us from exploring a seasonal trend in a conclusive manner, our data suggest that concurrent increases in δ 13 C and δ 15 N might occur as the breeding season progresses. At a seasonal scale, an average decrease of −0.7‰ per month (95% confidence interval=[−0.9; −0.6]) in δ 13 C might have occurred, concurrently with an average increase of 1.1‰ per month in δ 15 N. The results of this study constitute the first isotopic assessment for female Antarctic fur seals from Bouvetøya and provide a baseline for the use of this predator species as a sentinel of the marine trophic system in one of the least studied areas within this species' distributional range.
-
Species with similar ecological requirements that overlap in range tend to segregate their niches to minimize competition for resources. However, the niche segregation possibilities for centrally foraging predators that breed on isolated Subantarctic islands may be reduced by spatial constraints and limitations in the availability of alternative prey. In this study we examined spatial and trophic aspects of the foraging niches of two sympatrically breeding penguin species, macaroni (Eudyptes chrysolophus; MAC) and chinstrap (Pygoscelis antarcticus; CHIN) penguins, at Bouvetøya over two breeding seasons. To measure at-sea movements and diving behaviour, 90 MACs and 49 CHINs were equipped with GPS loggers and dive recorders during two austral summer breeding seasons (2014/15 and 2017/18). In addition, blood samples from tracked birds were analysed for stable isotopes to obtain dietary information. CHINs displayed marked interannual variation in foraging behaviour, diving deeper, utilizing a larger foraging area and displaying enriched values of δ15N in 2014/15 compared to the 2017/18 breeding season. In contrast, MACs dove to similar depths and showed similar δ15N values, while consistently utilizing larger foraging areas compared to CHINs. We suggest that low krill abundances in the waters around Bouvetøya during the 2014/15 season resulted in CHINs shifting toward a diet that increased their niche overlap with MACs. Our findings may partly explain the decreasing number of breeding CHINs at the world’s most remote island, Bouvetøya, while also highlighting the importance of characterizing niche overlap of species using multi-season data sets.
-
There is increasing interest in using higher-trophic level predators as ecosystem indicators because their performance is presumed to be linked to the overall function of the ecosystem that supports them. In the southwest Atlantic sector of the Southern Ocean, Antarctic krill (Euphausia superba) supports huge predator populations as well as a growing commercial fishery. To utilize information from the ecosystem in an adaptive framework for sustainably managing krill catch levels, performance indices of krill predators have been proposed as a proxy for krill abundance. However, there are several potentially confounding sources of variability that might impact predator performance such as the effects of environmental variability and fishing pressure on krill availability at scales relevant to predators. In this context, our study capitalises on the occurrence of an unexpected El Niño event to characterise how environmental variability can drive changes in predator foraging behaviour. We demonstrate a clear link between coastal downwelling and changes in the at-sea habitat usage of chinstrap penguins (Pygoscelis antarctica) foraging in a local krill fishing area. Penguins tracked from their breeding colonies on Powell Island, Antarctic Peninsula, undertook fewer, longer foraging trips during the downwelling-affected season compared with the season where no such downwelling was detected, suggesting that changes in climate-driven oceanography may have reduced krill availability along the northern shelf of the island. Our study demonstrates that penguin foraging behaviour is modified by scale-dependent processes, which if not accounted for may result in erroneous conclusions being drawn when using penguins as bioindicators of krill abundance.
-
Krillscan software was developed to automatically process echosounder data and achieve an accelerated and transparent analysis of backscatter data that allows calculation of target biomass. Herein, the fishery for Antarctic krill (Euphausia superba, Henceforth Krill) was used as a case study to develop the approach. Implementation of a sustainable management strategy for the krill fishery is complicated by a lack of regularly updated krill abundance data on spatiotemporal scales of the fishery. To increase krill biomass data availability, automatic echosounder data processing and swarm detection software was tested against traditional manual scrutinization with LSSS software and agreed with only minor offsets in estimated nautical area scattering coefficients. In addition to automatic processing and data transfer, Krillscan also has a graphical user interface to supervise automatic krill swarm detection. Echogram size can be compressed up to 100 times and raw data are processed faster than generated, thereby enabling near-real time analysis and data transfer. Compressed data can be transmitted online to allow fishing vessels to conduct surveys without having scientific personnel with special expertise on board.
-
Knowledge of the health status and potential effect of disease outbreaks among Southern Ocean fauna may be decisive for its conservation. We assessed the exposure and infection of Antarctic fur seals (Arctocephalus gazella, AFS) and Southern elephant seals (Mirounga leonine, SES) to parapoxvirus, Phocid alphaherpesvirus-1 (PhHV-1), smooth Brucella spp. and Toxoplasma gondii. AFS (n = 65) serum and swab samples, and SES (n = 13) serum samples from the sub--Antarctic island of Bouvetøya (54°25’S, 03°22’E) were collected during two austral summers (2014/15, 2017/18). Three polymerase chain reaction (PCR) tests amplifying the DNA polymerase, B2L and GIF parapoxvirus genomic regions were performed, investigating DNA from mucosal swab samples. The glycoprotein B gene was targeted to detect PhHV-1 viral DNA. Sera were assayed for T. gondii and smooth Brucella spp. antibodies with indirect enzyme-linked immunosorbent assays. Parapoxvirus PCR amplicons of the expected size were generated in two of the 29 AFS pups (nasal swabs, 2014/15), targeting the B2L (n = 2) and DNA polymerase (n = 1) genes, whereas the GIF PCR did not amplify target sequences. The PCR amplicons were sequenced and blasted in GenBank, revealing highest similarity with a seal parapoxvirus, confirming the presence of the virus in AFS for the first time. No PhHV-1 amplicons were generated, and antibodies against T. gondii or smooth Brucella spp. were not detected. Our data indicate that these seals are host for parapoxvirus but are neither exposed to smooth Brucella spp. nor T. gondii. Evidence of PhHV-1 shedding was not detected.
-
The stock assessment model for the Antarctic krill fishery is a population model operating on daily timesteps, which permits modeling within-year patterns of some population dynamics. We explored the effects of including within-year patterns in natural and fishing mortality on catch limits of krill, by incorporating temporal presence of key predator species and contemporary temporal trends of the fishing fleet. We found that inclusion of within-year variation in natural and fishing mortalities increased catch limits. Fishing mortality had a greater effect than natural mortality despite differences in top-down predation on krill, and potentially increased catch limits by 24% compared to the baseline model. Additionally, the stock assessment model allowed a higher catch limit when fishing was during peak summer months than autumn. Number of days with active fishing was negatively related to precautionary catch limits. Future stock assessments should incorporate contemporary spatiotemporal fishing trends and consider implementing additional ecosystem components into the model.
-
Marine predators are integral to the functioning of marine ecosystems, and their consumption requirements should be integrated into ecosystem-based management policies. However, estimating prey consumption in diving marine predators requires innovative methods as predator-prey interactions are rarely observable. We developed a novel method, validated by animal-borne video, that uses tri-axial acceleration and depth data to quantify prey capture rates in chinstrap penguins (Pygoscelis antarctica). These penguins are important consumers of Antarctic krill (Euphausia superba), a commercially harvested crustacean central to the Southern Ocean food web. We collected a large data set (n = 41 individuals) comprising overlapping video, accelerometer and depth data from foraging penguins. Prey captures were manually identified in videos, and those observations were used in supervised training of two deep learning neural networks (convolutional neural network (CNN) and V-Net). Although the CNN and V-Net architectures and input data pipelines differed, both trained models were able to predict prey captures from new acceleration and depth data (linear regression slope of predictions against video-observed prey captures = 1.13; R2 approximate to 0.86). Our results illustrate that deep learning algorithms offer a means to process the large quantities of data generated by contemporary bio-logging sensors to robustly estimate prey capture events in diving marine predators.
-
Antarctic krill <i>Euphausia superba</i>, a keystone species in the Southern Ocean, is highly relevant for studying effects of climate-related shifts on management systems. Krill provides a key link between primary producers and higher trophic levels and supports the largest regional fishery. Any major perturbation in the krill population would have severe ecological and economic ramifications. We review the literature to determine how climate change, in concert with other environmental changes, alters krill habitat, affects spatial distribution/abundance, and impacts fisheries management. Findings recently reported on the effects of climate change on krill distribution and abundance are inconsistent, however, raising questions regarding methods used to detect changes in density and biomass. One recent study reported a sharp decline in krill densities near their northern limit, accompanied by a poleward contraction in distribution in the Southwest Atlantic sector. Another recent study found no evidence of long-term decline in krill density or biomass and reported no evidence of a poleward shift in distribution. Moreover, with predicted decreases in phytoplankton production, vertical foraging migrations to the seabed may become more frequent, also impacting krill production and harvesting. Potentially cumulative impacts of climate change further compound the management challenge faced by CCAMLR, the organization responsible for conservation of Antarctic marine living resources: to detect changes in the abundance, distribution, and reproductive performance of krill and krill-dependent predator stocks and to respond to such change by adjusting its conservation measures. Based on CCAMLR reports and documents, we review the institutional framework, outline how climate change has been addressed within this organization, and examine the prospects for further advances toward ecosystem risk assessment and an adaptive management system.
-
Fine-scale knowledge of spatiotemporal dynamics in cetacean distribution and abundance throughout the Western Antarctic Peninsula (WAP) is sparse yet essential for effective ecosystem-based management (EBM). Cruise vessels were used as platforms of opportunity to collect data on the distribution and abundance of humpback whales (Megaptera novaeangliae) during the austral summer of 2019/2020 in a region that is also important for the Antarctic krill (Euphausia superba) fishery, to assess potential spatiotemporal interactions for future use in EBM. Data were analyzed using traditional design-based line transect methodology and spatial density surface hurdle models fitted using a set of physical environmental covariates to estimate the abundance and distribution of whales in the area, and to describe their temporal dynamics. Our results indicate a rapid increase in humpback whale abundance in the Bransfield and Gerlache Straits through December, reaching a stable abundance by mid-January. The distribution of humpback whales appeared to change from a patchier distribution in the northern Gerlache Strait to a significantly concentrated presence in the central Gerlache and southern Bransfield Straits, followed by a subsequent dispersion throughout the area. Abundance estimates agreed well with previous literature, increasing from approximately 7000 individuals in 2000 to a peak of 19,107 in 2020. Based on these estimates, we project a total krill consumption of between 1.4 and 3.7 million tons based on traditional and contemporary literature on per capita krill consumption of whales, respectively. When taken in the context of krill fishery catch data in the study area, we conclude that there is minimal spatiotemporal overlap between humpback whales and fishery activity during our study period of November–January. However, there is potential for significant interaction between the two later in the feeding season, but cetacean survey efforts need to be extended into late season in order to fully characterize this potential overlap.
-
Antarctic fur seal (Arctocephalus gazella) colonies are found on sub-Antarctic islands around the continent. These islands experience a range of conditions in terms of physical and biological habitat, creating a natural laboratory to investigate local genetic adaptation. One striking habitat difference is in the availability of Euphausia superba krill as prey, which has led to A. gazella exhibiting a range of diets. A. gazella in some colonies consume exclusively krill, while their conspecifics in other colonies feed mainly on fish and consume few to no krill. To investigate potential adaptations to these different prey fields, reduced representation genome sequencing was conducted on A. gazella from the 8 major colonies. Twenty-seven genomic regions exhibiting signatures of natural selection were identified. Two of these genomic regions were clearly associated with seals living in krill-dominated areas or those in fish-dominated areas. Twenty-two additional genomic regions under selection showed a pattern consistent with prey differences as the driver of selection after historical migrations from krill-dominated habitats where lineages evolved to present krill-poor habitat areas were taken into account. Only 1 of the genomic regions identified appeared to be explained by any other environmental variable analysed (depth). Genomic regions under prey-driven selection included genes associated with regulation of gene expression, skeletal development, and lipid metabolism. Adaptation to local prey has implications for spatial management of this species and for the potential impacts of climate- or harvest-driven reductions in krill abundance on these seals. KEY WORDS: Arctocephalus gazella · Double digest restriction-site associated DNA sequencing · ddRAD · Diet · Euphausia superba · Natural selection
-
Introduction: The Scotia Sea and Antarctic Peninsula are warming rapidly and changes in species distribution are expected. In predicting habitat shifts and considering appropriate management strategies for marine predators, a community-level understanding of how these predators are distributed is desirable. Acquiring such data, particularly in remote areas, is often problematic given the cost associated with the operation of research vessels. Here we use cruise vessels as sampling platforms to explore seabird distribution relative to habitat characteristics. Methods: Data on seabird at-sea distribution were collected using strip-transect counts throughout the Antarctic Peninsula and Scotia Sea in the austral summer of 2019-2020. Constrained correspondence analysis (CCA) and generalized additive models (GAM) were used to relate seabird community composition, density, and species richness to environmental covariates. Results: Species assemblages differed between oceanographic areas, with sea surface temperature and distance to coast being the most important predictors of seabird distribution. Our results further revealed a geographic separation of distinct communities rather than hotspot regions in the study area in summer. Discussion: These findings highlight the importance of large-scale environmental characteristics in shaping seabird community structure, presumably through underlying prey distribution and interspecific interactions. The present study contributes to the knowledge of seabird distribution and habitat use as well as the baseline for assessing the response of Antarctic seabird communities to climate warming. We argue that cruise vessels, when combined with structured research surveys, can provide a cost-effective additional tool for the monitoring of community and ecosystem level changes.
-
Despite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
-
Estimates of the distribution and density of Antarctic krill (Euphausia superba Dana, 1850) were derived from a large-scale survey conducted during the austral summer in the Southwest Atlantic sector of the Southern Ocean and across the Scotia Sea in 2018–19, the ‘2018–19 Area 48 Survey’. Survey vessels were provided by Norway, the Association of Responsible Krill harvesting companies and Aker BioMarine AS, the United Kingdom, Ukraine, Republic of Korea, and China. Survey design followed the transects of the Commission for the Conservation of Antarctic Marine Living Resources synoptic survey, carried out in 2000 and from regular national surveys performed in the South Atlantic sector by the U.S., China, Republic of Korea, Norway, and the U.K. The 2018–19 Area 48 Survey represents only the second large-scale survey performed in the area and this joint effort resulted in the largest ever total transect line (19,500 km) coverage carried out as one single exercise in the Southern Ocean. We delineated and integrated acoustic backscatter arising from krill swarms to produce distribution maps of krill areal biomass density and standing stock (biomass) estimates. Krill standing stock for the Area 48 was estimated to be 62.6 megatonnes (mean density of 30 g m–2 over 2 million km2) with a sampling coefficient variation of 13%. The highest mean krill densities were found in the South Orkney Islands stratum (93.2 g m–2) and the lowest in the South Georgia Island stratum (6.4 g m–2). The krill densities across the strata compared to those found during the previous survey indicate some regional differences in distribution and biomass. It is currently not possible to assign any such differences or lack of differences between the two survey datasets to longer term trends in the environment, krill stocks or fishing pressure.
-
Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
-
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.
Explore
Topic
- AABW (1)
- Antarktis (3)
- biofysikk (1)
- biogeokjemi (1)
- biologging (1)
- biologi (2)
- biotelemetri (2)
- Bouvetøya (7)
- dataanalyse (1)
- Dronning Maud Land (1)
- ekkolodd (1)
- epidemiologi (1)
- fiskeri (2)
- fiskerier (1)
- fiskeriforvaltning (1)
- fugler (1)
- fylogenetikk (1)
- genetikk (2)
- hvaler (1)
- hydrografi (1)
- infeksjon (1)
- klimaendringer (3)
- krill (7)
- marin biologi (12)
- marin økologi (1)
- marin zoologi (3)
- marinbiologi (1)
- marine økosystemer (5)
- meteorologi (1)
- miljøvern (1)
- NARE ekspedisjoner (1)
- økologi (2)
- økosystem (1)
- økosystemer (2)
- ornitologi (2)
- oseanografi (3)
- overvåking (1)
- pelsseler (4)
- pingviner (5)
- pinnipedier (1)
- plankton (7)
- satellitt (1)
- seler (1)
- serologi (1)
- sjøelefanter (1)
- sjøfugler (1)
- Sørishavet (16)
- stabile isotoper (1)
- telemetri (1)
- virologi (1)
- zoologi (2)
- zooplankton (1)
Resource type
- Journal Article (19)