Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • Mixing by mesoscale eddies profoundly impacts climate and ecosystems by redistributing and storing dissolved tracers such as heat and carbon. Eddy mixing is parameterized in most numerical models of the ocean and climate. To reduce known sensitivity to such parameterizations, observational estimates of mixing are needed. However, logistical and technological limitations obstruct our ability to measure global time-varying mixing rates. Here, we extend mixing length theory with mean-flow suppression theory, and first surface modes, to estimate mixing from readily available observational-based climatological data, of salinity, temperature, pressure, and eddy kinetic energy at the sea surface. The resulting full-depth global maps of eddy mixing can reproduce the few available direct estimates and confirm the importance of mean-flow suppression of mixing. The results also emphasize the significant effect of eddy surface intensification and its relation to the vertical density stratification. These new insights in mixing dynamics will improve future mesoscale eddy mixing parameterizations.

  • Lagrangian subsurface isopycnal eddy diffusivities are calculated from numerical floats released in several regions of the Antarctic Circumpolar Current (ACC) of the 0.1° Parallel Ocean Program. Lagrangian diffusivities are horizontally highly variable with no consistent latitudinal dependence. Elevated values are found in some areas in the core of the ACC, near topographic features, and close to the Brazil-Malvinas Confluence Zone and Agulhas Retroflection. Cross-stream eddy diffusivities are depth invariant in the model ACC. An increase of Lagrangian eddy length scales with depth is masked by the strong decrease with depth of eddy velocities. The cross-stream diffusivities average 750 ± 250 m2 s−1 around the Polar Frontal Zone. The results imply that parameterizations that (only) use eddy kinetic energy to parameterize the diffusivities are incomplete. We suggest that dominant correlations of Lagrangian eddy diffusivities with eddy kinetic energy found in previous studies may have been due to the use of too short time lags in the integration of the velocity autocovariance used to infer the diffusivities. We find evidence that strong mean flow inhibits cross-stream mixing within the ACC, but there are also areas where cross-stream diffusivities are large in spite of strong mean flows, for example, in regions close to topographic obstacles such as the Kerguelen Plateau.

  • Oceanic mesoscale eddy mixing plays a crucial role in Earth’s climate system by redistributing heat, salt, and carbon. For many ocean and climate models, mesoscale eddies still need to be parameterized. This is often done via an eddy diffusivity K , which sets the strength of turbulent downgradient tracer fluxes. A well-known effect is the modulation of K in the presence of background potential vorticity (PV) gradients, which suppresses cross-PV gradient mixing. Topographic slopes can induce such suppression through topographic PV gradients. However, this effect has received little attention, and topographic effects are often not included in parameterizations for K . In this study, we show that it is possible to describe the effect of topography on K analytically in a barotropic framework, using a simple stochastic representation of eddy–eddy interactions. We obtain an analytical expression for the depth-averaged K as a function of the bottom slope, which we validate against diagnosed eddy diffusivities from a numerical model. The obtained analytical expression can be generalized to any constant barotropic PV gradient. Moreover, the expression is consistent with empirical parameterizations for eddy diffusivity over topography from previous studies and provides a physical rationalization for these parameterizations. The new expression helps to understand how eddy diffusivities vary across the ocean, and thus how mesoscale eddies impact ocean mixing processes.

Last update from database: 6/26/24, 9:10 AM (UTC)