Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • The Weddell Sea is of global importance in the formation of dense bottom waters associated with sea ice formation and ocean-ice sheet interaction occurring on the shelf areas. In this context, the Weddell Sea boundary current system (BCS) presents a major conduit for transporting relatively warm water to the Weddell Sea ice shelves and for exporting some modified form of Wedell Sea deep and bottom waters into the open ocean. This study investigates the downstream evolution of the structure and the seasonality of the BCS along the Weddell Sea continental slope, combining ocean data collected for the past two decades at three study locations. The interannual-mean geostrophic flow, which follows planetary potential vorticity contours, shifts from being surface intensified to bottom intensified along stream. The shift occurs due to the densification of water masses and the decreasing surface stress that occurs westward, toward the Antarctic Peninsula. A coherent along-slope seasonal acceleration of the barotropic flow exists, with maximum speed in austral autumn and minimum speed in austral summer. The barotropic flow significantly contributes to the seasonal variability in bottom velocity along the tip of the Antarctic Peninsula. Our analysis suggests that the winds on the eastern/northeastern side of the gyre determines the seasonal acceleration of the barotropic flow. In turn, they might control the export of Weddell Sea Bottom Water on seasonal time scales. The processes controlling the baroclinic seasonality of the flow need further investigation.

  • The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.

  • The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.

Last update from database: 12/1/24, 3:11 AM (UTC)