Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • The geology of Dronning Maud Land (East Antarctica) is so far deduced from isolated outcrops along the coast and from a major coast parallel escarpment surmounting the thick ice sheet. Large parts of Dronning Maud Land are, however, hidden underneath thick ice. In this study we attempt to connect geological information with aeromagnetic data in order to unveil the subglacial geology of this part of East Antarctica. During four austral summer campaigns (2001–2005) in Dronning Maud Land, new aeromagnetic data were gathered across an area of 1.2million square kilometers of which a portion of 65% was previously unexplored. In total 100,000 line kilometers were flown over Dronning Maud Land between 14°W/20° E and 70°S/78.5°S. A striking result was the discovery of a pronounced magnetic anomaly, named here Forster Magnetic Anomaly, east of the Jutulstraumen. It starts at approximately 72°S/007°E and strikes in southwesterly direction as far south as 75°S/1°W. The Forster Magnetic Anomaly likely forms a major tectonic block boundary and/or a suture zone within the East African–Antarctic Orogen (EAAO). The shape and distribution of other magnetic anomalies are discussed in the context of the Proterozoic to Mesozoic geological history of this part of Antarctica.

  • The geology of East Antarctica and its correlation in major supercontinents is highly speculative, since only a very small part of it is exposed. Therefore a better connection between geology and geophysics is needed in order to correlate exposed regions with ice-covered, geophysically-defined, blocks. In Dronning Maud Land (DML), two distinct late Mesoproterozoic/early Neoproterozoic tectono-metamorphic provinces appear, separated by the major, NE-trending Forster Magnetic Anomaly and South Orvin Shear Zone. To the west of this lineament, the Maud Belt has clear affinities with Grenville-age continent-continent mobile belts. East of the Forster Magnetic Anomaly, juvenile rocks with early Neoproterozoic age (Rayner-age) and an accretionary character crop out. The international GEA-II expedition (2012) targeted a white spot on the geological map immediately to the E of the Forster Magnetic Anomaly. This area allows the characterization and ground-truthing of a large and mostly ice-covered region, the SE DML Province that had previously been interpreted as an older cratonic block. However, new SHRIMP/SIMS zircon analyses and their geochemistry indicates that the exposed basement consists of a ca. 1000-900 Ma juvenile terrane that is very similar to rocks in Sor Rondane. It lacks significant metamorphic overprint at the end of crust formation, but it shows medium to high-grade overprinting between ca. 630-520 Ma, associated with significant felsic melt production, including A-type granitoid magmatism. Therefore, the aeromagnetically distinct SE DML province does neither represent the foreland of a Late Neoproterozoic/EarlyPaleozoic mobile belt, nor a craton, as has previously been speculated. It more likely represents the more juvenile, westward continuation of Rayner-age crust (1000-900 Ma). To the west it abuts along the NE-trending Forster Magnetic Anomaly. The latter is interpreted as a suture, which separates typical Grenville-age crust of the Maud Belt (ca. 1200-1030 Ma) to the W from Rayner-age crust to the E. Therefore the larger eastern part of DML has clearly Indian affinities. Its juvenile character with a lack of metamorphic overprint at the end of crust formation points to an accretionary history along this part of the Indian segment of Rodinia, immediately following final Rodinia assembly.

  • We present a compilation of more than 45,000 km of multichannel seismic data acquired in the last three decades in the Weddell Sea. In accordance with recent tectonic models and available drillhole information, a consistent stratigraphic model for depositional units W1–W5 is set up. In conjunction with existing aeromagnetic data, a chronostratigraphic timetable is compiled and units W1.5, W2 and W3 are tentatively dated to have ages of between 136 Ma and 114 Ma. The age of W3 is not well constrained, but might be younger than 114 Ma. The data indicate that the thickest sediments are present in the western and southern Weddell Sea. These areas formed the earliest basins in the Weddell Sea and so the distribution of Mesozoic sediments is in accordance with the tectonic development of the ocean basin. In terms of Cenozoic glacial sediments, the largest depocenters are situated in front of the Filchner–Ronne Shelf, i.e. at the Crary Fan, with a thickness of up to 3 km.

  • The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Federal Institute for Geosciences and Natural Resources (BGR) collected around 150 hours of new gravity, magnetic and ice-penetrating radar data from east and south of Princess Elisabeth station in Dronning Maud Land between 2013 and 2015. Survey lines were spaced 10 km apart. The 2013/2014 and 2014/2015 used different gravimeters; a LaCoste and Romberg AirSea gravimeter (LCR) at constant barometric altitude and a Gravimetric Technologies GT2A gravimeter at constant ground separation. Both surveys used a Scintrex Cs-3 caesium vapour magnetometer mounted in a tail boom with compensation for the airframe calculated using a fuselage-mounted three-component fluxgate magnetometer. The GT2A gravity data reflect the effects of short-wavelength density contrasts between basement rocks and the ice sheet more reliably than the LCR data. Cross-over analysis suggests the repeatability of data collection with the GT2A lies at the sub-milliGal level. A broad subglacial channel that separates eastern Sør Rondane from the Yamato Belgica Mountains is evident in the gravity data. In the south of the survey region, the data reveal a dendritic pattern of subglacial valleys that converge towards the SW. Strong NS-trending magnetic anomalies coincide with the Yamato-Belgica Mountains. Further west, subtler ESE-trending anomalies confirm proposals that the SE Dronning Maud Land province continues into the region south of eastern Sør Rondane. An unexpected feature of both data sets is the apparent termination of the anomaly patterns associated with the province at a NNW-trending anomaly running south of Princess Elisabeth.

  • The geology of Sør Rondane has been the focus of intense research and occupies a key position for reconstructing the late Neoproterozoic to early Paleozoic geodynamic evolution in eastern Dronning Maud Land (DML). Sør Rondane appears to be located close to the supposed intersection of the East African-Antarctic Orogen (EAAO) and the Kuunga Orogen. The western part of Sør Rondane is subdivided in two distinct terranes. The amphibolite to granulite-facies NE terrane is mainly composed of metasupracrustal rocks, with detrital zircon ages in part younger than 750 Ma, deposited on older basement of unknown, possibly Rayner-type, crust (Shiraishi et al., 2008). Metamorphism has been dated by U-Pb on zircon at ca. 640-600 Ma and amphibolite-facies retrogression dated at ca. 590-530 Ma. The SW terrane is subdivided by the Main Shear Zone (MSZ) into two lithothectonic units, i.e. Pan- African greenschist- to granulite-facies metamorphic rocks with “East African” affinities in the N and a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite (GTTG) complex with “Indo-Antarctic” affinities in the S. The GTTG complex has suffered Pan-African greenschist- to lower amphibolite-facies thermal overprint, but also contains large domains with only weak deformation except for its northern margin close to the MSZ. The deformation there is related to high shear strain along this structure. New zircon crystallisation ages of the GTTG cluster around 1000-930 Ma. It is interpreted to have formed along a juvenile oceanic arc, in which the wide age range might indicate a long-lasting accretionary orogen. The MSZ is characterized by a right-lateral sense of movement and high-strain ductile deformation under peak amphibolite-facies conditions. The structure can be traced over a distance of ca. 120 km between Lågkollane in the W and Lunckeryggen in the E and reaches several hundred meters in width. The MSZ cannot be traced further to the W where it seems to terminate at the north-eastern border of the NW-SE oriented prominent magnetically defined SE DML Province. The north-eastern border zone may coincide with a significant dextral shear zone that runs from the Schirmacher Oasis into the region S of Sør Rondane (Schirmacher- Rondane Lineament). The SE DML Province most likely consists of Rayner-age (1000-900 Ma) crust with evidence of intense Pan-African reworking indicated by new geochronological data and was part of a large Tonian Oceanic Arc Super Terrane (TOAST). The continuation of the MSZ into eastern Sør Rondane and beyond is not clear either, since it appears to terminate at a N-S oriented region with low magnetic signatures (central Sør Rondane corridor) that is possibly related to extensional tectonics. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between Latest Ediacaran to Cambrian times (c. 560- 530 Ma). Based on new combined aeromagnetic and structural results from a four-seasons survey of the greater Sør Rondane region, we propose that the crustal structural architecture of eastern DML and is strongly influenced by N-directed (with Africa/Antarctica restored to its original position in Gondwana) lateral extrusion of the EAAO. This process was likely driven by the combination of (i) indentation of the SE DML block towards the conjugate stable Kalahari- Grunehogna cratonic foreland, (ii) extensional collapse of the previously (c. 580-550 Ma) thickened and gravitational instable crust of central DML, and (iii) large-scale tectonic escape of crustal blocks in eastern DML along major shear zones such as the Schirmacher Rondane Lineament and MSZ towards an unconstrained yet unknown region at a lateral position of the EAAO.

  • Central Dronning Maud Land (CDML) in East Antarctica is an important region for understanding Rodinia and Gondwana supercontinent cycles. Zircon U-Pb dating and Hf-O isotopic data revealed by extensive sampling across CDML provide constraints on the timing and source of main magmatism and new insights into the crustal composition and evolution. SIMS zircon U-Pb ages indicate multi-stage magmatic activities from Mesoproterozoic to Cambrian times at 1160-1130 Ma, 1115-1100 Ma, 1090-1070 Ma, 780-750 Ma, 645-600 Ma and 530-485 Ma, as well as Mesoproterozoic metamorphism at 1085-1050 Ma recorded by zircon rims. This region was subjected a large-scale and long-lasting high-grade metamorphism during 600-500 Ma. Most 1160-1080 Ma granitic rocks exhibit εHf (t) values ranging from +5 and +8 and δ18O slightly higher than mantle value (6-7 ‰), indicating a main derivation from juvenile crust. The involvement of Paleoproterozoic continental materials, which were most likely from adjacent Kalahari Craton, is attested by minor samples with negative to neutral εHf (t) and significantly elevated δ18O values (8-10 ‰). The late Neoproterozoic (750-600 Ma) rocks, including anorthosite, charnockite and granite, display an evolved Hf isotopic composition and high δ18O values (7.5-9 ‰), suggesting a significant addition of crust-derived materials into the source. The data imply that in CDML, late Mesoproterozoic (Grenville-age) magmatism during the assembly of Rodinia is dominated by the addition of new crust with subordinate reworking of ancient crust. Subsequent subduction process associated with the break-up of Rodinia and assembly of Gondwana largely witnessed recycling of previous continental components. Combined with whole-rock geochemistry, it is speculated that the accretionary process along the Maud margin of Kalahari Craton lasted from the Mesoproterozoic, across the late Tonian (750 Ma) until Ediacaran to suture west and east Gondwana blocks.

  • East Antarctica probably formed by amalgamation of a number of cratons along distinct Ediacaran mobile belts, including the ca. 600-500 Ma East African-Antarctic Orogen (EAAO) that dissects Dronning Maud Land (DML). New field-work during the international expeditions Geodynamic Evolution of East Antarctica (GEA) I + II in the austral summers 2010/11 and 2011/12, and first geochronological results from eastern DML reveal a complex tectonic architecture across the belt. In western DML, the EAAO reworks older Mesoproterozoic crust of the Maud Belt; the westernmost boundary of the mobile belt is characterized by a major dextral transpressional shear zone. In central DML, a major magnetic anomaly, the Forster anomaly, was interpreted as a cryptic suture of the EAAO (Riedel et al. 2012). The area where the Forster anomaly crosses the DML mountains is poorly investigated so far, but appears to coincide with a major strike slip shear zone in the southern Kurze Mts. and the occurrence of major Ediacaran granulite bodies. East of the Forster anomaly, the magnetic anomaly pattern changes significantly and typical Maud type crust is not present any longer. GEA II targeted a range of nunataks between Sør Rondane and central DML that had never been visited previously (from Blåklettane and Bergekongen in the E to Urna and Sørsteinen in the W). These nunataks are dominated by medium- to high-grade metasedimentary and metavolcanic rocks of possibly Neoproterozoic age, including abundant marble and graphite schists. Sør Rondane in eastern DML, is dominated by two distinct blocks separated by the dextral Main Shear Zone. The northwestern block is still part of the eastern EAAO, where new SHRIMP zircon data from metamorphic rims provide ages of ca. 560 Ma. The southeastern block is made up of a TTG terrane, which provides four new SHRIMP zircon dates between 990-980 Ma, interpreted as igneous crystallization ages (oceanic arc). The TTG terrane shows limited tectonic overprint and is likely the southeastern foreland of the EAAO. Close to the contact of the two blocks grey geisses and augen-gneisses gave zircon crystallization ages of ca. 750 Ma, ages which were previously unknown from the EAAO. The Forster anomaly therefore separates distinctly different parts of the EAAO: a) a reworked, mainly Grenville-age crust to the W (the overprinted margin of the Kalahari Craton) and b) a part of the orogen dominated by Neoproterozoic accretionary tectonics to the E. This difference is also reflected in the geochemistry of voluminous late-tectonics granitoids across the belt.

  • The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.

  • The Antarctic ice sheet has been losing mass over past decades through the accelerated flow of its glaciers, conditioned by ocean temperature and bed topography. Glaciers retreating along retrograde slopes (that is, the bed elevation drops in the inland direction) are potentially unstable, while subglacial ridges slow down the glacial retreat. Despite major advances in the mapping of subglacial bed topography, significant sectors of Antarctica remain poorly resolved and critical spatial details are missing. Here we present a novel, high-resolution and physically based description of Antarctic bed topography using mass conservation. Our results reveal previously unknown basal features with major implications for glacier response to climate change. For example, glaciers flowing across the Transantarctic Mountains are protected by broad, stabilizing ridges. Conversely, in the marine basin of Wilkes Land, East Antarctica, we find retrograde slopes along Ninnis and Denman glaciers, with stabilizing slopes beneath Moscow University, Totten and Lambert glacier system, despite corrections in bed elevation of up to 1 km for the latter. This transformative description of bed topography redefines the high- and lower-risk sectors for rapid sea level rise from Antarctica; it will also significantly impact model projections of sea level rise from Antarctica in the coming centuries.

  • We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.

Last update from database: 6/26/24, 9:10 AM (UTC)