Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
Spectral albedo and bidirectional reflectance of snow were measured at Dome C on the East Antarctic Plateau for wavelengths of 350–2400 nm and solar zenith angles of 52°–87°. A parameterization of bidirectional reflectance, based on those measurements, is used as the lower boundary condition in the atmospheric radiation model SBDART to calculate radiance and flux at the top of the atmosphere (TOA). The model's atmospheric profile is based on radiosoundings at Dome C and ozonesoundings at the South Pole. Computed TOA radiances are integrated over wavelength for comparison with the Clouds and the Earth's Radiant Energy System (CERES) shortwave channel. CERES radiance observations and flux estimates from four clear days in January 2004 and January 2005 from within 200 km of Dome C are compared with the TOA radiances and fluxes computed for the same solar zenith angle and viewing geometry, providing 11,000 comparisons. The measured radiance and flux are lower than the computed values. The median difference is about 7% for CERES on Terra, and 9% on Aqua. Sources of uncertainty in the model and observations are examined in detail and suggest that the measured values should be less than the computed values, but only by 1.7% ± 4%. The source of the discrepancy of about 6% cannot be identified here; however, the modeled values do agree with observations from another satellite instrument (Multiangle Imaging Spectroradiometer), suggesting that the CERES calibration must be considered a possible source of the discrepancy.
-
Clouds and the Earth's radiant energy system (CERES) is a satellite-based remote sensing system designed to monitor the Earth's radiation budget. In this paper we examine uncertainties in the angular distribution models (ADMs) used by CERES over permanently snow covered surfaces with clear skies. These ADMs are a key part of the CERES data processing algorithms, used to convert the observed upwelling radiance to an estimate of the upwelling hemispheric flux. We model top-of-atmosphere anisotropic reflectance factors using an atmospheric radiative transfer model with a lower boundary condition based on extensive reflectance observations made at Dome C, Antarctica. The model results and subsequent analysis show that the CERES operational clear-sky permanent-snow ADMs are appropriate for use over Dome C, with differences of less than 5% between the model results and the ADMs at most geometries used by CERES operationally. We show that the uncertainty introduced into the flux estimates through the use of the modeled radiances used in the ADM development is small when the fluxes are averaged over time and space. Finally, we show that variations in the angular distribution of radiance at the top of the atmosphere due to atmospheric variability over permanently snow covered regions are in most cases unlikely to mask the real variations in flux caused by these atmospheric variations.
-
Clouds have a large effect on the radiation budget and represent a major source of uncertainty in climate models. Supercooled liquid clouds can exist at temperatures as low as 235 K, and the radiative effect of these clouds depends on the complex refractive index (CRI) of liquid water. Laboratory measurements have demonstrated that the liquid-water CRI is temperature-dependent, but corroboration with field measurements is difficult. Here we present measurements of the downwelling infrared radiance and in-situ measurements of supercooled liquid water in a cloud at temperatures as low as 240 K, made at South Pole Station in 2001. These results demonstrate that including the temperature dependence of the liquid-water CRI is essential for accurate calculations of radiative transfer through supercooled liquid clouds. Furthermore, we show that when cloud properties are retrieved from infrared radiances (using the spectral range 500–1,200 cm−1) spurious ice may be retrieved if the 300 K CRI is used for cold liquid clouds (∼240 K). These results have implications for radiative transfer in climate models as well as for retrievals of cloud properties from infrared radiance spectra.
-
Understanding how Antarctica is changing and how these changes influence the rest of the Earth is fundamental to the future robustness of human society. Strengthening our understanding of these changes and their implications requires dedicated, sustained and coordinated observations of key Antarctic indicators. The Troll Observing Network (TONe), now under development, is Norway’s contribution to the global need for sustained, coordinated, complementary and societally relevant observations from Antarctica. When fully implemented within the coming three years, TONe will be a state-of-the-art, multi-platform, multi-disciplinary observing network in data-sparse Dronning Maud Land. A critical part of the network is a data management system that will ensure broad, free access to all TONe data to the international research community.
-
Antarctica is the coldest, windiest and least inhabited place on Earth. One of its most enigmatic regions is scoured by katabatic winds blue ice that covers 235,000 km2 of the Antarctic fringe. Here, we demonstrate that contrary to common belief, high-altitude inland blue ice areas are not dry, nor barren. Instead, they promote sub-surface melting that enables them to become “powerplants” for water, nutrients, carbon and major ions production. Mapping cryoconite holes at an unprecedented scale of 62 km2 also revealed a regionally significant resource of dissolved nitrogen, phosphorus (420 kg km−2), dissolved carbon (1323 kg km−2), and major ions (6672 kg km−2). We discovered that unlike on glaciers, creation of cryoconite holes and their chemical signature on the ice sheet is governed by ice movement and bedrock geology. Blue ice areas are near-surface hotspots of microbial life within cryoconite holes. Bacterial communities they support are unexpectedly diverse. We also show that near-surface aquifers can exist in blue ice outside cryoconite holes. Identifying blue ice areas as active ice sheet ecosystems will help us understand the role ice sheets play in Antarctic carbon cycle, development of near-surface drainage system, and will expand our perception of the limits of life.
Explore
Topic
- Antarktis (5)
- atmosfæren (3)
- biogeokjemi (1)
- biologi (1)
- datainnsamling (1)
- Dronning Maud Land (1)
- fjernmåling (2)
- forskningsinfrastruktur (1)
- fysikk (1)
- geofysikk (1)
- geografi (1)
- geologi (2)
- internasjonal samarbeid (1)
- kjemi (1)
- klima (1)
- klimamodeller (1)
- meteorologi (2)
- mikrobielle organismer (1)
- mikrobiologi (1)
- observasjoner (2)
- snø (1)
- solstråling (2)
- Sørishavet (1)
- Sydpolen (1)
- Troll forskningsstasjon (1)
Resource type
- Journal Article (5)
Publication year
-
Between 2000 and 2024
(5)
-
Between 2010 and 2019
(2)
- 2010 (2)
- Between 2020 and 2024 (3)
-
Between 2010 and 2019
(2)
Online resource
- yes (5)