Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • Global targets for area-based conservation and management must move beyond threshold-based targets alone and must account for the quality of such areas. In the Southern Ocean around Antarctica, a region where key biodiversity faces unprecedented risks from climate change and where there is a growing demand to extract resources, a number of marine areas have been afforded enhanced conservation or management measures through two adopted marine protected areas (MPAs). However, evidence suggests that additional high quality areas could benefit from a proposed network of MPAs. Penguins offer a particular opportunity to identify high quality areas because these birds, as highly visible central-place foragers, are considered indicator species whose populations reflect the state of the surrounding marine environment. We compiled a comprehensive dataset of the location of penguin colonies and their associated abundance estimates in Antarctica. We then estimated the at-sea distribution of birds based on information derived from tracking data and through the application of a modified foraging radius approach with a density decay function to identify some of the most important marine areas for chick-rearing adult penguins throughout waters surrounding Antarctica following the Important Bird and Biodiversity Area (IBA) framework. Additionally, we assessed how marine IBAs overlapped with the currently adopted and proposed network of key management areas (primarily MPAs), and how the krill fishery likely overlapped with marine IBAs over the past five decades. We identified 63 marine IBAs throughout Antarctic waters and found that were the proposed MPAs to be adopted, the permanent conservation of high quality areas for penguin species would increase by between 49 and 100% depending on the species. Furthermore, our data show that, despite a generally contracting range of operation by the krill fishery in Antarctica over the past five decades, a consistently disproportionate amount of krill is being harvested within marine IBAs compared to the total area in which the fishery operates. Our results support the designation of the proposed MPA network and offer additional guidance as to where decision-makers should act before further perturbation occurs in the Antarctic marine ecosystem.

  • Globally important services are supported by Southern Ocean ecosystems, underpinned by the structure, function, and dynamics of complex interconnected and regionally distinctive food webs. These food webs vary in response to a combination of physical and chemical processes that alter productivity, species composition and the relative abundance and dynamics of organisms. Combined with regional and seasonal variability, climate-induced changes and human activities have and are expected to continue to drive important structural and functional changes to Southern Ocean food webs. However, our current understanding of food web structure, function, status, and trends is patchy in space and time, and methods for systematically assessing and comparing community-level responses to change within and across regional and temporal scales are not well developed. Insights gained from food web modelling studies—ranging from theoretical analyses of ecosystem resilience and adaptation, to qualitative and quantitative descriptions of the system—can assist in resolving patterns of energy flow and the ecological mechanisms that drive food web structure, function, and responses to drivers (such as fishing and climate change). This understanding is required to inform robust management strategies to conserve Southern Ocean food webs and the ecosystem services they underpin in the face of change. This paper synthesises the current state of knowledge regarding Southern Ocean pelagic food webs, highlighting the distinct regional food web characteristics, including key drivers of energy flow, dominant species, and network properties that may indicate system resilience. In particular, the insights, gaps, and potential integration of existing knowledge and Southern Ocean food web models are evaluated as a basis for developing integrated food web assessments that can be used to test the efficacy of alternative management and policy options. We discuss key limitations of existing models for assessing change resulting from various drivers, summarise priorities for model development and identify that significant progress could be made to support policy by advancing the development of food web models coupled to projected biogeochemical models, such as in Earth System models.

Last update from database: 6/26/24, 9:10 AM (UTC)

Explore