Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 22 resources
-
The Southern Ocean circulation and sea-ice distribution is briefly described. The formation of extremely cold bottom water in the Weddell Sea and its relation to the floating Ronne-Filchner Ice Shelves is discussed. It is shown that a concentrated swift eroding bottom current with anomalous low ratio transports the cold and dense ice Shelf Water from the shelf towards large depths. Comments are made on possible implications of this process for the large-scale deep-water circulation and for the interpretation of sediment cores.
-
During the 1979-1980 expediton with the icebreaker Polarsirkel we had an excellent opportunity to study the physical oceanography of the inner part of the Weddell Sea. The ship followed the ice shelf barrier from Cape Norwegia at about 15 °W, and due to favourable ice conditions, it was able to penetrate all the way to the Antarctic Peninsula (60 0W). In this preliminary report we give a review of the physical oceanography programme which mostly consists of hydrographic (CTD) stations near the barrier, and also sorne current and water level measurernents. The different water masses observed are described and the possibility for a tidal-drlvcn upwelling near the ice shelf barrier is indicated.
-
We present the first year-long current meter records ever obtained near the floating Filchner-Ronne Ice Shelf in the Weddell Sea. The currents are steered along the ice front, but in the lower layer where the bottom topography is descending toward the west the current has a component toward the ice front of about 3 cm s−1. During winter the temperature stayed near the surface freezing point, while the salinity increased, indicating that ice was formed and brine released. The seasonal variation in salinity was 0.15±0.05 psu, corresponding to the formation of 1–2 m of ice on a shelf depth of 400 m. The transport of High-Salinity Shelf Water (HSSW) into the ice shelf cavity was found to be of the order 0.5×106 m3 s−1. The production of this water due to oscillating tides and off shelf winds was found to be of the same order of magnitude. In contact with glacial ice at great depths, and because of the depression of the freezing point, the HSSW is transformed to Ice Shelf Water (ISW) by cooling and melting processes. The melting rate was estimated to 1×1011 ton yr−1. This corresponds to the melting of 0.2 m ice per year if the melting is evenly distributed over the Filchner-Ronne Ice Shelf. If the melting is concentrated along a path from the Berkner Shelf around the Berkner Island to the Filchner Depression, then melting rates up to 7 m yr−1 must be expected. A comparison of HSSW characteristics in the Ronne Depression, our winter observations on the Berkner Shelf, and the ISW flowing out of the Filchner Depression indicates that very little water passes through the cavity from the Ronne to the Filchner Depression. It appears that most of the ISW originating from processes on the Berkner Shelf escapes the cavity in the Filchner Depression. This leaves the Berkner Shelf as the important source of ISW and subsequently of the Weddell Sea Bottom Water formed from ISW.
-
Interactions between the Southern Ocean and the Weddell Sea ice shelves are important both to the Antarctic Ice Sheet and to the production of globally significant water masses. Here we review the interaction between the Filchner-Ronne Ice Shelf and the shelf sea in which it floats. The continental shelf processes leading to the production of Weddell Sea deep and bottom waters from the original off-shelf source waters are discussed, and a new view is offered of the initial production of High-Salinity Shelf Water. Data from ship-based measurements at the ice front, from glaciological methods, and from measurements made within the sub–ice shelf cavity itself are used to describe the pattern of flows beneath the ice shelf. We also consider the variability observed within the cavity from tidal to interannual time scales and finish with a discussion of future research priorities in the region.
-
Oxygen 18 and helium isotope data from stations located in the Filchner Depression, on the continental slope of the southern Weddell Sea, and in the central Weddell Sea are presented and discussed. The 18O and 4He signals imprinted on the water circulating under the Filchner/Ronne Ice Shelf (Ice Shelf Water, or ISW) due to melting of glacial ice at the base of the ice shelf are traced across the sill separating the Filchner Depression from the Weddell Sea. Low δ18O values are correlated with high 4He concentrations in the ISW found in the Filchner Depression (minimum δ18O values: −0.8‰; maximum 4He concentrations: about 4.7×10−8 cm3 STP g−1). The fraction of glacial meltwater contained in the ISW found in the Filchner Depression is estimated to about 6 to 7‰. The 18O and helium isotope data from the overflowing shelf water component observed on the continental slope confirm the hypothesis that ISW contributes significantly to the Weddell Sea Bottom Water (WSBW). On the basis of a inultiparameter water mass analysis it is discussed which fraction of the WSBW originates from ISW and which other shelf waters potentially could contribute to WSBW.
Explore
Topic
- AABW (1)
- Antarktis (2)
- biogeokjemi (1)
- Bouvetøya (1)
- brehylle (1)
- bunnvann (1)
- bunnvannet (1)
- ekspedisjoner (5)
- forskning (3)
- geofysikk (3)
- glasiologi (4)
- global oppvarming (1)
- havis (4)
- havnivåstigning (1)
- havstrømmer (6)
- hydrografi (7)
- innlandsis (2)
- is (2)
- isberg (1)
- isbreer (2)
- isbrem (1)
- isfront (1)
- isshelf (10)
- klimaendringer (1)
- kontinentalsokkel (2)
- kontinentalsokler (1)
- marin biologi (1)
- NARE 1978/79 (3)
- NARE 1984/85 (1)
- NARE 1989/90 (1)
- NARE 1992/93 (1)
- NARE 2000/01 (1)
- NARP 1992/93 (1)
- observasjoner (2)
- oseanografi (17)
- sjøis (1)
- sjøvann (3)
- smeltevann (1)
- Sørishavet (19)
- vannmasser (4)
- Weddellhavet (17)
Resource type
- Book Section (7)
- Journal Article (15)