Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • To assess the impact of human activities and other factors on the levels of highly toxic trace elements in the environment, the contents of eight highly toxic trace elements (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in feathers of 15 bird species from the Prydz Bay region in the Antarctic, Ny-Alsund region in the Arctic, and eastern China were evaluated in this study. Results showed that feathers collected from the Antarctic showed the highest As, Cu, and Hg contents (1.65–2.85, 9.58–18.56, and 4.77–8.76 μg/g dw, respectively) of the different study areas, whereas Arctic feathers exhibited the highest mean Pb levels (1.82–3.19 μg/g dw), and feathers from China showed significantly lower accumulations of Cr, Ni, Pb, and Zn compared with the other two areas. Overall, most of the studied highly toxic trace element contents in bird feathers from the densely populated and polluted area of eastern China were lower than those from remote polar regions, which are negligibly affected by human activities. In addition, feathers from the Arctic did not show higher highly toxic trace element contents than those of the more remote Antarctic. These results are thus inferred to reflect differences in the dietary structure of birds in the different habitats, as well as historical climate change. Carbon (δ13C) and nitrogen (δ15N) stable isotope ratios of feathers were also measured to evaluate the relationship between diet and highly toxic trace elements. Results showed that highly toxic trace element contents did not increase with increasing trophic levels. Moreover, the methylmercury content accounted for 87.57%–98.59% of the total mercury in all feather samples, regardless of location and species, confirming that most of the mercury entering the feathers is methylated. This finding suggests that the form of mercury changes during the process of transference from internal tissues to feathers, which improves our understanding of the mechanism by which feathers excrete mercury, this behavior greatly reduces the harm to bird health caused by mercury. This study confirms that measuring contaminants in feathers is a long-term and effective method for monitoring highly toxic trace elements pollution in particular environments, making future monitoring of highly toxic trace elements pollution in the polar regions, as well as more typical environments, more convenient.

  • The role of polychlorinated biphenyls (PCBs) on exposure-related endocrine effects has been poorly investigated in wild birds. This is the case for stress hormones including corticosterone (CORT). Some studies have suggested that environmental exposure to PCBs and altered CORT secretion might be associated. Here we investigated the relationships between blood PCB concentrations and circulating CORT levels in seven free-ranging polar seabird species occupying different trophic positions, and hence covering a wide range of PCB exposure. Blood ∑7PCB concentrations (range: 61–115,632 ng/g lw) were positively associated to baseline or stress-induced CORT levels in three species and negatively associated to stress-induced CORT levels in one species. Global analysis suggests that in males, baseline CORT levels generally increase with increasing blood ∑7PCB concentrations, whereas stress-induced CORT levels decrease when reaching high blood ∑7PCB concentrations. This study suggests that the nature of the PCB-CORT relationships may depend on the level of PCB exposure.

  • Per and polyfluoroalkyl substances (PFASs) are found in Antarctic wildlife, with high levels in the avian top predator south polar skua (Catharacta maccormicki). As increasing PFAS concentrations were found in the south polar skua during the breeding season in Antarctica, we hypothesised that available prey during the breeding period contributes significantly to the PFAS contamination in skuas. To test this, we compared PFAS in south polar skuas and their main prey from two breeding sites on opposite sides of the Antarctic continent: Antarctic petrel (Thalassoica antarctica) stomach content, eggs, chicks, and adults from Svarthamaren in Dronning Maud Land and Adélie penguin chicks (Pygoscelis adeliae) from Dumont d’Urville in Adélie Land. Of the 22 PFAS analysed, seven were present in the majority of samples, except petrel stomach content [only perfluoroundecanoate (PFUnA) present] and Adélie penguins (only four compounds present), with increasing concentrations from the prey to the skuas. The biomagnification factors (BMFs) were higher at Dumont d’Urville than Svarthamaren. When adjusted to reflect one trophic level difference, the BMFs at Svarthamaren remained the same, whereas the ones at Dumont d’Urville doubled. At both the colonies, the skua PFAS pattern was dominated by perfluorooctanesulfonic acid (PFOS), followed by PFUnA, but differed with the presence of branched PFOS and perfluorotetradecanoate (PFTeA) and lack of perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) at Dumont d’Urville. At Svarthamaren, the pattern in the prey was comparable to the skuas, but with a higher relative contribution of PFTeA in prey. At Dumont d’Urville, the pattern in the prey differed from the skuas, with the domination of PFUnA and the general lack of PFOS in prey. Even though the PFAS levels are low in Antarctic year-round resident prey, the three lines of evidence (pattern, BMF difference, and BMF adjusted to one trophic level) suggest that the Antarctic petrel are the significant source of PFAS in the Svarthamaren skuas, whereas the skuas in Dumont d’Urville have other important sources to PFAS than Adélie penguin, either in the continent or external on the inter-breeding foraging grounds far from Antarctica.

Last update from database: 6/26/24, 9:10 AM (UTC)