Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 3 resources
-
Microplastic (MP; plastic particles < 5 mm) pollution is pervasive in the marine environment, including remote polar environments. This study provides the first pan-Antarctic survey of MP pollution in Southern Ocean sea ice by analyzing sea ice cores from several diverse Antarctic regions. Abundance, chemical composition, and particle size data were obtained from 19 archived ice core samples. The cores were melted, filtered, and chemically analyzed using Fourier-transform infrared spectroscopy and 4,090 MP particles were identified. Nineteen polymer types were found across all samples, with an average concentration of 44.8 (± 50.9) particles·L-1. Abundance and composition varied with ice type and geographical location. Pack ice exhibited significantly higher particle concentrations than landfast ice, suggesting open ocean sources of pollution. Winter sea ice cores had significantly more MPs than spring and summer-drilled cores, suggesting ice formation processes play a role in particle incorporation. Smaller particles dominated across samples. Polyethylene (PE) and polypropylene (PP) were the most common polymers, mirroring those most identified across marine habitats. Higher average MP concentrations in developing sea ice during autumn and winter, contrasting lower levels observed in spring and summer, suggest turbulent conditions and faster growth rates are likely responsible for the increased incorporation of particles. Southern Ocean MP contamination likely stems from both local and distant sources. However, the circulation of deep waters and long-range transport likely contribute to the accumulation of MPs in regional gyres, coastlines, and their eventual incorporation into sea ice. Additionally, seasonal sea ice variations likely influence regional polymer compositions, reflecting the MP composition of the underlying waters.
-
Winter to summer CO2 dynamics within landfast sea ice in McMurdo Sound (Antarctica) were investigated using bulk ice pCO2 measurements, air-snow-ice CO2 fluxes, dissolved inorganic carbon (DIC), total alkalinity (TA), and ikaite saturation state. Our results suggest depth-dependent biotic and abiotic controls that led us to discriminate the ice column in three layers. At the surface, winter pCO2 supersaturation drove CO2 release to the atmosphere while spring-summer pCO2 undersaturation led to CO2 uptake most of the time. CO2 fluxes showed a diel pattern superimposed upon this seasonal pattern which was potentially assigned to either ice skin freeze-thaw cycles or diel changes in net community production. In the ice interior, the pCO2 decrease across the season was driven by physical processes, mainly independent of the autotrophic and heterotrophic phases. Bottom sea ice was characterized by a massive biomass build-up counterintuitively associated with transient heterotrophic activity and nitrate plus nitrite accumulation. This inconsistency is likely related to the formation of a biofilm. This biofilm hosts both autotrophic and heterotrophic activities at the bottom of the ice during spring and may promote calcium carbonate precipitation.
-
Antarctic sea ice plays an important role in Southern Ocean biogeochemistry and mediating Earth's climate system. Yet our understanding of biogeochemical cycling in sea ice is limited by the availability of relevant data over sufficient temporal and spatial scales. Here we present a new publicly available compilation of macronutrient concentration data from Antarctic land-fast sea ice, covering the full seasonal cycle using datasets from around Antarctica, as well as a smaller dataset of macronutrient concentrations in adjacent seawater. We show a strong seasonal cycle whereby nutrient concentrations are high during autumn and winter, due to supply from underlying surface waters, and then are utilised in spring and summer by mixed ice algal communities consisting of diatoms and non-siliceous species. Our data indicate some degree of nutrient limitation of ice algal primary production, with silicon limitation likely being most prevalent, although uncertainties remain around the affinities of sea-ice algae for each nutrient. Remineralisation of organic matter and nutrient recycling drive substantial accumulations of inorganic nitrogen, phosphate and to a lesser extent silicic acid in some ice cores to concentrations far in excess of those in surface waters. Nutrient supply to fast ice is enhanced by brine convection, platelet ice accumulation and incorporation into the ice matrix, and under-ice tidal currents, whilst nutrient adsorption to sea-ice surfaces, formation of biofilms, and abiotic mineral precipitation and dissolution can also influence fast-ice nutrient cycling. Concentrations of nitrate, ammonium and silicic acid were generally higher in fast ice than reported for Antarctic pack ice, and this may support the typically observed higher algal biomass in fast-ice environments.
Explore
Topic
- alger (1)
- biofilm (1)
- biomasse (1)
- forurensning (1)
- geokjemi (1)
- havis (2)
- iskjerner (1)
- karbon syklus (1)
- karbondioksid (1)
- kjemi (1)
- landfast havis (1)
- landfast sjøis (1)
- marin biologi (1)
- mikroplast (1)
- oseanografi (1)
- sjøis (1)
- Sørishavet (3)
Resource type
- Journal Article (3)
Publication year
Online resource
- yes (3)