Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 7 resources
-
In hierarchical patch systems, small-scale patches of high density are nested within large-scale patches of low density. The organization of multiple-scale hierarchical systems makes non-random strategies for dispersal and movement particularly important. Here, we apply a new method based on first-passage time on the pathway of a foraging seabird, the Antarctic petrel (Thalassoica antarctica), to quantify its foraging pattern and the spatial dynamics of its foraging areas. Our results suggest that Antarctic petrels used a nested search strategy to track a highly dynamic hierarchical patch system where small-scale patches were congregated within patches at larger scales. The birds searched for large-scale patches by traveling fast and over long distances. Once within a large-scale patch, the birds concentrated their search to find smaller scale patches. By comparing the pathway of different birds we were able to quantify the spatial scale and turnover of their foraging areas. On the largest scale we found foraging areas with a characteristic scale of about 400 km. Nested within these areas we found foraging areas with a characteristic scale of about 100 km. The large-scale areas disappeared or moved within a time frame of weeks while the nested small-scale areas disappeared or moved within days. Antarctic krill (Euphausia superba) is the dominant food item of Antarctic petrels and we suggest that our findings reflect the spatial dynamics of krill in the area.
-
How animals change their movement patterns in relation to the environment is a central topic in a wide area of ecology, including foraging ecology, habitat selection, and spatial population ecology. To understand the underlying behavioral mechanisms involved, there is a need for methods to measure changes in movement patterns along a pathway through the landscape. We used simulated pathways and satellite tracking of a long-ranging seabird to explore the properties of first-passage time as a measure of search effort along a path. The first-passage time is defined as the time required for an animal to cross a circle with a given radius. It is a measure of how much time an animal uses within a given area. First-passage time is scale dependent, and a plot of variance in first-passage time vs. spatial scale reveals the spatial scale at which the animal concentrates its search effort. By averaging the first-passage time on a geographical grid, it is possible to relate first-passage time to environmental variables and the search pattern of other individuals.
-
In polar seas, the seasonal melting of ice triggers the development of an open-waterecosystem characterized by short-lived algal blooms, the grazing and development of zooplank-ton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of icemelt generates temporal variability in the development of these events across the habitat, offeringa natural framework to assess how foraging marine predators respond to the spring phenology.We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarcticawith synopticremote-sensing data on sea ice and chlorophyll ato test how the development of melting ice andprimary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passagetime revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. Theseareas changed position or disappeared within 10 to 30 d and showed no spatial consistency amongyears. Generalized additive model (GAM) analyses suggested that the presence of foraging areaswas related to the time since ice melt. Antarctic petrels concentrated their search effort in meltingareas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found nosignificant relationship between search effort and chlorophyll aconcentration. We suggest thatthese foraging patterns were related to the vertical distribution and profitability of the main prey,the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in theSouthern Ocean shapes the development of a highly patchy and elusive food web, underscoringthe importance of flexible foraging strategies among top predators. KEY WORDS: Area-restricted search · Euphausia superba· Marginal ice zone · Phytoplanktonbiomass · Procellariiformes · Sea ice dynamics · Southern Ocean · Thalassoica antarctica
-
Introduction: The Scotia Sea and Antarctic Peninsula are warming rapidly and changes in species distribution are expected. In predicting habitat shifts and considering appropriate management strategies for marine predators, a community-level understanding of how these predators are distributed is desirable. Acquiring such data, particularly in remote areas, is often problematic given the cost associated with the operation of research vessels. Here we use cruise vessels as sampling platforms to explore seabird distribution relative to habitat characteristics. Methods: Data on seabird at-sea distribution were collected using strip-transect counts throughout the Antarctic Peninsula and Scotia Sea in the austral summer of 2019-2020. Constrained correspondence analysis (CCA) and generalized additive models (GAM) were used to relate seabird community composition, density, and species richness to environmental covariates. Results: Species assemblages differed between oceanographic areas, with sea surface temperature and distance to coast being the most important predictors of seabird distribution. Our results further revealed a geographic separation of distinct communities rather than hotspot regions in the study area in summer. Discussion: These findings highlight the importance of large-scale environmental characteristics in shaping seabird community structure, presumably through underlying prey distribution and interspecific interactions. The present study contributes to the knowledge of seabird distribution and habitat use as well as the baseline for assessing the response of Antarctic seabird communities to climate warming. We argue that cruise vessels, when combined with structured research surveys, can provide a cost-effective additional tool for the monitoring of community and ecosystem level changes.
-
Abstract Individual heterogeneity in diet and foraging behaviour is common in wild animal populations, and can be a strong determinant of how populations respond to environmental changes. Within populations, variation in foraging behaviour and the occurrence of individual tactics in relation to resources distribution can help explain differences in individual fitness, and ultimately identify important factors affecting population dynamics. We examined how foraging behaviour and habitat during the breeding period related to the physiological state of a long-ranging seabird adapted to sea ice, the Antarctic petrel Thalassoica antarctica. Firstly, using GPS tracking and state-switching movement modelling (hidden Markov models) on 124 individual birds, we tested for the occurrence of distinct foraging tactics within our study population. Our results highlight a large variation in the movement and foraging behaviour of a very mobile seabird, and delineate distinct foraging tactics along a gradient from foraging in dense pack ice to foraging in open water. Secondly, we investigated the effects of these foraging tactics on individual state at return from a foraging trip. We combined movement data with morphometric and physiological measurements of a suite of plasma metabolites that provided a general picture of a bird's individual state. Foraging in denser sea ice was associated with lower gain in body mass during brooding, as well as lower level of energy acquisition (plasma triacylglycerol) during both brooding and incubation. We found no clear relationship between the foraging tactic in relation to sea ice and the energetic stress (changes in plasma corticosterone), energetic balance (β-hydroxybutyrate) or trophic level (δ15N). However, a shorter foraging range was related to both the energetic balance (positively) and the trophic level (negatively). Our results highlight a diverse range of foraging tactics in relation to sea ice in Antarctic petrels. While the various foraging tactics do not seem to strongly alter energetic balance, they may affect other aspects of Antarctic petrels' physiology. Future changes in sea-ice habitats can thus be expected to have an impact on the individual state of seabirds such as Antarctic petrels, which could ultimately affect their population dynamics. Nonetheless, strong individual heterogeneity in the use of sea-ice habitats by a typical pagophilic species might strengthen its resilience to environmental changes and in particular to forecasted sea-ice loss. A free Plain Language Summary can be found within the Supporting Information of this article.
Explore
Topic
- Antarktis (2)
- biologi (1)
- biomasse (1)
- Dronning Maud Land (2)
- fenologi (1)
- fôring (3)
- fugler (3)
- fytoplankton (1)
- havis (2)
- klima (1)
- marin biologi (3)
- marin zoologi (1)
- marine økosystemer (1)
- miljøendringer (1)
- NARE 2000/01 (1)
- NARE ekspedisjoner (1)
- observasjoner (2)
- økologi (1)
- økosystemer (1)
- ornitologi (5)
- petreller (6)
- satellittelemetri (2)
- sjøfugler (3)
- sjøis (2)
- smelting (2)
- Sørishavet (4)
- Weddellhavet (1)
- zoologi (4)
Resource type
- Journal Article (7)
Publication year
-
Between 1900 and 1999
(1)
-
Between 1990 and 1999
(1)
- 1998 (1)
-
Between 1990 and 1999
(1)
-
Between 2000 and 2024
(6)
- Between 2000 and 2009 (2)
-
Between 2010 and 2019
(1)
- 2017 (1)
- Between 2020 and 2024 (3)
Online resource
- yes (7)