Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • The Miami Isopycnic Coordinate Ocean Model (MICOM) is used to investigate the effect of diapycnal mixing on the oceanic uptake of CFC-11 and the ventilation of the surface waters in the Southern Ocean (south of 45°S). Three model experiments are performed: one with a diapycnal mixing coefficientKd (m2 s−1) of 2 × 10−7/N (Expt. 1), one withKd = 0 (Expt. 2), and one withKd = 5 × 10−8/N (Expt. 3),N (s−1) is the Brunt-Väisälä frequency. The model simulations indicate that the observed vertical distribution of CFC-11 along 88°W (prime meridian at 0°E) in the Southern Ocean is caused by local ventilation of the surface waters and westward-directed (eastward-directed) isopycnic transport and mixing from deeply ventilated waters in the Weddell Sea region. It is found that at the end of 1997, the simulated net ocean uptake of CFC-11 in Expt. 2 is 25% below that of Expt. 1. The decreased uptake of CFC-11 in the Southern Ocean accounts for 80% of this difference. Furthermore, Expts. 2 and 3 yield far more realistic vertical distributions of the ventilated CFC-waters than Expt. 1. The experiments clearly highlight the sensitivity of the Southern Ocean surface water ventilation to the distribution and thickness of the simulated mixed layer. It is argued that inclusion of CFCs in coupled climate models could be used as a test-bed for evaluating the decadal-scale ocean uptake of heat and CO2.

  • An integrated plume model is used to describe large scale gravity currents in the ocean. The model describes competing effects of (negative) buoyancy, friction, entrainment and Cariolis farce, as well as a pressure term due to variable plume thickness, on the flux, speed and flow direction of the plume. Equations for conservation of salt and internal energy (temperature) and a full equation of state far seawater is included in the model. The entrainment of ambient water is parameterized with support in empirical data, and a drag coefficient consistent with the entrainment is introduced. The model is tested against the overflow through the Denmark Strait, the flow down the Weddell Sea continental slope, and the outflow of saline water through the Gibraltar Strait and from the Spencer Gulf, Australia. The farmer gain an extra driving mechanism due to the thermobaric effect, while in the two latter cases the initial density difference is so large that this effect is not essential. Order of magnitude fit with measurements requires drag coefficient between 0.01 and 0.1. Conditions susceptible to meander behaviour and a singularity arising from the pressure dependency on the current thickness variations are briefly discussed.

  • A new climate simulation for the middle Pliocene (ca. 3 Ma BP) is performed by a global grid-point atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP AGCM) with boundary conditions provided by the U. S. Geological Survey's Pliocene Research, Interpretations, and Synoptic Mapping (PRISM) group. It follows that warmer and slightly wetter conditions dominated at the middle Pliocene with a globally annual mean surface temperature increase of 2.60°C, and an increase in precipitation of 4.0% relative to today. At the middle Pliocene, globally annual terrestrial warming was 1.86°C, with stronger warming toward high latitudes. Annual precipitation enhanced notably at high latitudes, with the augment reaching 33.5% (32.5%) of the present value at 60–90°N (60–90°S). On the contrary, drier conditions were registered over most parts at 0–30°N, especially in much of East Asia and the northern tropical Pacific. In addition, both boreal summer and winter monsoon significantly decreased in East Asia at the middle Pliocene. It is indicated that the IAP AGCM simulation is generally consistent with the results from other atmospheric models and agrees well with available paleoclimatic reconstructions in East Asia. Additionally, it is further revealed that the PRISM warmer sea surface temperature and reduced sea ice extent are main factors determining the middle Pliocene climate. The simulated climatic responses arising from the PRISM reconstructed vegetation and continental ice sheet cannot be neglected on a regional scale at mid to high latitudes (like over Greenland and the Qinghai-Tibetan Plateau, and around the circum-Antarctic) but have little influence on global climate.

  • A new coupled atmosphere–ocean–sea ice model has been developed, named the Bergen Climate Model (BCM). It consists of the atmospheric model ARPEGE/IFS, together with a global version of the ocean model MICOM including a dynamic–thermodynamic sea ice model. The coupling between the two models uses the OASIS software package. The new model concept is described, and results from a 300-year control integration is evaluated against observational data. In BCM, both the atmosphere and the ocean components use grids which can be irregular and have non-matching coastlines. Much effort has been put into the development of optimal interpolation schemes between the models, in particular the non-trivial problem of flux conservation in the coastal areas. A flux adjustment technique has been applied to the heat and fresh-water fluxes. There is, however, a weak drift in global mean sea-surface temperature (SST) and sea-surface salinity (SSS) of respectively 0.1 °C and 0.02 psu per century. The model gives a realistic simulation of the radiation balance at the top-of-the-atmosphere, and the net surface fluxes of longwave, shortwave, and turbulent heat fluxes are within observed values. Both global and total zonal means of cloud cover and precipitation are fairly close to observations, and errors are mainly related to the strength and positioning of the Hadley cell. The mean sea-level pressure (SLP) is well simulated, and both the mean state and the interannual standard deviation show realistic features. The SST field is several degrees too cold in the equatorial upwelling area in the Pacific, and about 1 °C too warm along the eastern margins of the oceans, and in the polar regions. The deviation from Levitus salinity is typically 0.1 psu – 0.4 psu, with a tendency for positive anomalies in the Northern Hemisphere, and negative in the Southern Hemisphere. The sea-ice distribution is realistic, but with too thin ice in the Arctic Ocean and too small ice coverage in the Southern Ocean. These model deficiencies have a strong influence on the surface air temperatures in these regions. Horizontal oceanic mass transports are in the lower range of those observed. The strength of the meridional overturning in the Atlantic is 18 Sv. An analysis of the large-scale variability in the model climate reveals realistic El Niño – Southern Oscillation (ENSO) and North Atlantic–Arctic Oscillation (NAO/AO) characteristics in the SLP and surface temperatures, including spatial patterns, frequencies, and strength. While the NAO/AO spectrum is white in SLP and red in temperature, the ENSO spectrum shows an energy maximum near 3 years.

  • A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.

Last update from database: 6/26/24, 9:10 AM (UTC)