Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies1,2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3,4,5 through the Atlantic meridional overturning circulation6,7,8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.

  • Fe(II) is more soluble and bioavailable than Fe(III) species, therefore the investigation of their relative abundance and redox processes is relevant to better assess the supply of bioavailable iron to the ocean and its impact on marine productivity. In this context, we present a discrete chemiluminescence-based method for the determination of Fe(II) in firn matrices. The method was applied on discrete samples from a snow pit collected at Dome C (DC, Antarctica) and on a shallow firn core from the Holtedahlfonna glacier (HDF, Svalbard), providing the first Fe(II) record from both Antarctica and Svalbard. The method showed low detection limits (0.006 ng g−1 for DC and 0.003 ng g−1 for the HDF) and a precision ranging from 3% to 20% RSD. Fe(II) concentrations ranged between the LoD and 0.077 ng g−1 and between the LoD and 0.300 ng g−1 for the Antarctic and Arctic samples, respectively. The Fe(II) contribution with respect to the total dissolved Fe was comparable in both sites accounting, on average, for 5% and 3%, respectively. We found that Fe(II) correctly identified the Pinatubo/Cerro Hudson eruption in the DC record, demonstrating its reliability as volcanic tracer, while, on the HDF core, we provided the first preliminary insight on the processes that might influence Fe speciation in firn matrices (i.e. organic ligands and pH influences).

  • The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.

Last update from database: 12/1/24, 3:11 AM (UTC)