Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Search

Full bibliography 3,061 resources

  • In this article, we investigate three arguments for Rights of Antarctica (RoA), understood as recognising the whole continent as a rights-holder with legal standing. For this, we draw inspiration from the Antarctica Declaration, a text developed by an interdisciplinary and international group of scholars and activists. We scrutinise three justifications that could potentially be used in support of RoA. First, we investigate whether arguments for Rights of Nature (RoN) elsewhere can support RoA. RoN has been accepted in several domestic legislations. Unfortunately, we discover important disanalogies between RoA and RoN, defeating the purpose of justifying RoA with reference to RoN. Second, we scrutinise potential arguments that focus on giving rights to specific Antarctic ecoregions or places. However, such arguments would only cover parts of the continent, thus going against the holistic approach of RoA, and they would require using a broader understanding of ?attachments? as grounds for justifying rights for parts of Antarctica. In contrast, we construct an argument for accepting RoA based on four components: (1) Antarctica?s intrinsic value, (2) wider forms of human attachments, (3) Antarctica?s substantial role as a global systemic resource, and (4) the fact that Antarctica is under recurrent and substantial threats. While none of these are individually sufficient for recognising RoA, they can jointly make RoA appropriate. We conclude that it remains an open question whether international law or, more specifically, the Antarctic Treaty, would be open to such conceptual and normative innovation, adopting a new paradigm in our treatment of the nonhuman natural world. At the same time, we hope to kickstart a discussion of what RoA would require and how it should relate more generally to RoN discourses.

  • Antarctic sea ice has exhibited significant variability over the satellite record, including a period of prolonged and gradual expansion, as well as a period of sudden decline. A number of mechanisms have been proposed to explain this variability, but how each mechanism manifests spatially and temporally remains poorly understood. Here, we use a statistical method called low-frequency component analysis to analyze the spatiotemporal structure of observed Antarctic sea ice concentration variability. The identified patterns reveal distinct modes of low-frequency sea ice variability. The leading mode, which accounts for the large-scale, gradual expansion of sea ice, is associated with the Interdecadal Pacific Oscillation and resembles the observed sea surface temperature trend pattern that climate models have trouble reproducing. The second mode is associated with the central Pacific El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode and accounts for most of the sea ice variability in the Ross Sea. The third mode is associated with the eastern Pacific ENSO and Amundsen Sea Low and accounts for most of the pan-Antarctic sea ice variability and almost all of the sea ice variability in the Weddell Sea. The third mode is also related to periods of abrupt Antarctic sea ice decline that are associated with a weakening of the circumpolar westerlies, which favors surface warming through a shoaling of the ocean mixed layer and decreased northward Ekman heat transport. Broadly, these results suggest that climate model biases in long-term Antarctic sea ice and large-scale sea surface temperature trends are related to each other and that eastern Pacific ENSO variability is a key ingredient for abrupt Antarctic sea ice changes.

  • Future climate and sea level projections depend sensitively on the response of the Antarctic Ice Sheet to ocean-driven melting and the resulting freshwater fluxes into the Southern Ocean. Circumpolar Deep Water (CDW) transport across the Antarctic continental shelf and into cavities beneath ice shelves is increasingly recognised as a crucial heat source for ice shelf melt. Quantifying past changes in the temperature of CDW is therefore of great benefit for modelling ice sheet response to past warm climates, for validating paleoclimate models, and for putting recent and projected changes in CDW temperature into context. Here we compile the available bottom water temperature reconstructions representative of CDW over the past 800 kyr. Estimated interglacial warming reached anomalies of +0.6 +/- 0.4 degrees C (MIS 11) and +0.5 +/- 0.5 degrees C (MIS 5) relative to present. Glacial cooling typically reached anomalies of ca. -1.5 to -2 degrees C, therefore maintaining positive thermal forcing for ice shelf melt even during glacials in the Amundsen Sea region of West Antarctica. Despite high variance amongst a small number of records and poor (4 kyr) temporal resolution, we find persistent and close relationships between our estimated CDW temperature and Southern Ocean sea surface temperature, Antarctic surface air temperature, and global deep-water temperature reconstructions at glacial-cycle timescales. Given the important role that CDW plays in connecting the world's three main ocean basins and in driving Antarctic Ice Sheet mass loss, additional temperature reconstructions targeting CDW are urgently needed to increase temporal and spatial resolution and to decrease uncertainty in past CDW temperatures - whether for use as a boundary condition, for model validation, or for understanding past oceanographic changes.

  • Abstract The Antarctic Slope Front and the associated Antarctic Slope Current dynamically regulate the exchanges of heat across the continental shelf break around Antarctica. Where the front is weak, relatively warm deep waters reach the ice shelf cavities, contributing to basal melting and ultimately affecting sea level rise. Here, we present new 2017?2021 records from two moorings deployed on the upper continental slope (530 and 738 m depth) just upstream of the Filchner Trough in the southeastern Weddell Sea. The structure and seasonal variability of the frontal system in this region, central to the inflow of warm water toward the large Filchner-Ronne Ice Shelf, is previously undescribed. We use the records to describe the mean state and the seasonal variability of the regional hydrography and the southern part of the Antarctic Slope Current. We find that (a) the current is, contrary to previous assumptions, bottom-enhanced, (b) the isotherms slope upwards toward the shelf break, and more so for warmer isotherms, and (c) the monthly mean thermocline depth is shallowest in February-March and deepest in May-June while (d) the current is strongest in April-June. On monthly timescales, we show that (e) positive temperature anomalies of the de-seasoned records are associated with weaker-than-average currents. We propose that the upward-sloping isotherms are linked to the local topography and conservation of potential vorticity. Our results contribute to the understanding of how warm ocean waters propagate southward and potentially affect basal melt rates at the Filchner-Ronne Ice Shelf.

  • The polar regions are increasingly at the center of attention as the hot spots of climate crisis as well as tourism development. The recent IPCC reports highlight several climate change risks for the rather carbon-intensive and weather-based/dependent polar tourism industry in the Arctic and the Antarctic. This study presents the scholarly state-of-knowledge on tourism and climate change in the polar regions with a literature survey extending beyond the Anglophone publications. As a supporting tool, we provide a live web GIS application based on the geographical coverages of the publications and filterable by various spatial, thematic and bibliographical attributes. The final list of 137 publications indicates that, regionally, the Arctic has been covered more than the Antarctic, whilst an uneven distribution within the Arctic also exists. In terms of the climate change risks themes, climate risk research, i.e. impact and adaptation studies, strongly outnumbers the carbon risk studies especially in the Arctic context, and, despite a balance between the two main risk themes, climate risk research in the Antarctic proves itself outdated. Accordingly, the review ends with a research agenda based on these spatial and thematic gaps and their detailed breakdowns.

  • Maritime historical documentary sources of weather and state of sea surface including sea ice can aid in filling a known climate knowledge gap for the Southern Ocean and Antarctica for the first half of the 20th century. This study presents a data set of marine climate, sea ice and icebergs recovered from a collection of logbooks from mainly Norwegian whaling factory ships that operated in the Southern Ocean during 1929-1940. The data set comprises some 8000 weather and 4000 sea ice/open sea records from austral summers of the study period. This paper further discusses the structure and content of most common Norwegian maritime documentary sources of the period along with the practices of logging information relevant for the study, such as time keeping, positioning and making weather observations. An emphasis was made on recovery of notes on sea ice and icebergs and their interpretation in terms of WMO categories of sea ice concentration. Data, including ship-related metadata from all individual documents are homogenized and structured to a common machine-readable format that simplifies its ingestion into relevant climate data depositories.

  • During the last few decades, several sectors in Antarctica have transitioned from glacial mass balance equilibrium to mass loss. In order to determine if recent trends exceed the scale of natural variability, long-term observations are vital. Here we explore the earliest, large-scale, aerial image archive of Antarctica to provide a unique record of 21 outlet glaciers along the coastline of East Antarctica since the 1930s. In Lützow-Holm Bay, our results reveal constant ice surface elevations since the 1930s, and indications of a weakening of local land-fast sea-ice conditions. Along the coastline of Kemp and Mac Robertson, and Ingrid Christensen Coast, we observe a long-term moderate thickening of the glaciers since 1937 and 1960 with periodic thinning and decadal variability. In all regions, the long-term changes in ice thickness correspond with the trends in snowfall since 1940. Our results demonstrate that the stability and growth in ice elevations observed in terrestrial basins over the past few decades are part of a trend spanning at least a century, and highlight the importance of understanding long-term changes when interpreting current dynamics.

  • From 1901 to 1912 – known as the “heroic period” of Arctic and Antarctic exploration – great inroads were made (not only geographic but also scientific) to our knowledge of the continent. At Amundsen's Expedition through the Northwest Passage, measurements of the geomagnetic field and visual auroras were carried out for 19 months at Gjoa Haven (Gjøahavn in Norwegian; geographic coordinates 68°37′10′′ N, 95°53′25′′ W). Scott's Discovery Expedition – at Cape Armitage, McMurdo (coordinates 77.86° S, 166.69° E), Antarctica – carried out the same type of measurements. Their observations were carried out geomagnetically conjugate to Gjoa Haven, with both stations close to 78° magnetic latitude. In addition, measurements were overlapping in time during 1903–1904. However, these two stations are located at different longitudes, so there is a difference in local time between the stations of about 6.5 h. Gjoa Haven and Cape Armitage are conveniently located for separating disturbances in the polar cap regions caused by solar electromagnetic radiations or the solar wind. Auroras were observed during 7 months per year. This gave a unique possibility to compare conjugate characteristics of polar cap auroras. Comparing conjugate geophysical data introduces some difficulties. During the winter season at Gjoa Haven, they had a bright summer in Antarctica, and visa versa. Thus, simultaneous temporal and spatial ionospheric variations can be marked differently. Still, the average diurnal and seasonal variations were similar. The quantity of the auroral data from Cape Armitage was larger because there they had a continuous watch of the sky. The main findings regarding polar cap auroras are the following. Three different auroral forms dominate the polar cap. Low-intensity auroral bands – then called streamers – were the dominating auroral forms morning and afternoon. The number of auroral events in 1903 was nearly twice that in 1902 and 1904. A marked midwinter maximum was observed at both stations. Many displays were observed poleward of the oval. The large fraction was associated with weak magnetic disturbances. Some forms of polar cap aurora have special magnetic signatures and seem to be anti-correlated with Kp. They can be mapped even if they are not seen. According to recent satellite measurements (Newell et al., 2009), they are probably caused by polar rain and/or photoelectrons.

  • In this study, we have investigated rock weathering phenomena in the central part of Dronning Maud Land, Antarctica. The area is characterized by low mean annual temperatures (−18 °C), strong katabatic winds, and minimal liquid water at the surface. Weathering features, including ventifacts, tafoni, and grus accumulations, are characterized through field observations, rock surface temperature measurements, and microscopic analysis. Abrasion by sand and ice particles transported by strong winds has locally resulted in ridge-shaped ventifacts and rock surfaces with elongated pits, furrows, and grooves. The abrasion-caused features, such as polished facets, keels, and grooves, indicate a northeast-facing wind direction, aligning with the present-day wind regime. The dominant weathering processes in coarse-grained intrusive rocks are oxidation and granular disintegration. Fe-oxidation induces cracking, increasing the porosity and enhancing susceptibility to further weathering. Additionally, temperature fluctuations on rock surfaces caused by solar radiation create thermal stress, which can lead to the formation of microcracks. These microcracks, formed due to thermal expansion, are likely to propagate through subcritical cracking, which is a slow, long-term process. Together, Fe-oxidation, thermal expansion, and subcritical cracking are important mechanisms contributing to long-term weathering and rock decay. Salt weathering, facilitated by snow and ice meltwater, particularly within tafoni, leads to flaking and disintegration of the parent rock. These findings shed light on the complex interactions shaping the geomorphology of central Dronning Maud Land and provide insights into long-term weathering processes operating in Antarctica's extreme environment.

  • Fluid infiltration into Proterozoic and Early Palaeozoic dry, orthopyroxene-bearing granitoids and gneisses in Dronning Maud Land, Antarctica, has caused changes to rock appearance, mineralogy, and rock chemistry. The main mineralogical changes are the replacement of orthopyroxene by hornblende and biotite, ilmenite by titanite, and various changes in feldspar structure and composition. Geochemically, these processes resulted in general gains of Si, mostly of Al, and marginally of K and Na but losses of Fe, Mg, Ti, Ca, and P. The isotopic oxygen composition (δ18OSMOW = 6.0‰–9.9‰) is in accordance with that of the magmatic precursor, both for the host rock and infiltrating fluid. U-Pb isotopes in zircon of the altered and unaltered syenite to quartz-monzonite indicate a primary crystallization age of 520.2 ± 1.0 Ma, while titanite defines alteration at 485.5 ± 1.4 Ma. Two sets of gneiss samples yield a Rb-Sr age of 517 ± 6 Ma and a Sm-Nd age of 536 ± 23 Ma. The initial Sr and Nd isotopic ratios suggest derivation of the gneisses from a relatively juvenile source but with a very strong metasomatic effect that introduced radiogenic Sr into the system. The granitoid data indicate instead a derivation from Mid-Proterozoic crust, probably with additions of mantle components.

  • Circulation and water masses in the greater Prydz Bay region were surveyed in the austral summer 2021 (January-March) during the ‘Trends in Euphausiids off Mawson, Predators and Oceanography’ (TEMPO) experiment, and are described in this paper. The Southern Antarctic Circumpolar Current Front is found in the northern part of the survey area, generally near 63-64°S, whereas the Southern Boundary Front is located between 64 and 65.5°S. The westward flowing Antarctic Slope Front (ASF) is found in the southern part of the survey area near the continental slope on most transects. Highest concentrations of oxygen (> 300 µmol kg−1) are found in shelf waters at stations in Prydz Bay, south of 67°S along 75°E, whereas the lowest oxygen values are found in the Circumpolar Deep Water layer, with an average of roughly 215 µmol kg−1. North of the northern extension of the ASF, surface mixed layers are between 20 and 60 m deep. Mixed layers tend to deepen slightly in the northern part of the survey, generally increasing north of 64°S where the ocean has been ice-free the longest. We find evidence of upwelling of waters into the surface layers, based on temperature anomaly, particularly strong along 80°E. Enhanced variability of biogeochemical properties - nutrients, DIC, DO - in the AASW layer is driven by a combination of sea-ice and biological processes. Antarctic Bottom Water, defined as water with neutral density > 28.3 kg m-3, was sampled at all the offshore full-depth stations, with a colder/fresher variety along western transects and a warmer/saltier variety in the east. Newly formed Antarctic Bottom Water – the coldest, freshest, and most recently ventilated – is mostly found in the deep ocean along 65°E, in the base of the Daly Canyon.

  • Abstract In this study, the subseasonal Antarctic sea ice edge prediction skill of the Copernicus Climate Change Service (C3S) and Subseasonal to Seasonal (S2S) projects was evaluated by a probabilistic metric, the spatial probability score (SPS). Both projects provide subseasonal to seasonal scale forecasts of multiple coupled dynamical systems. We found that predictions by individual dynamical systems remain skillful for up to 38 days (i.e., the ECMWF system). Regionally, dynamical systems are better at predicting the sea ice edge in the West Antarctic than in the East Antarctic. However, the seasonal variations of the prediction skill are partly system-dependent as some systems have a freezing-season bias, some had a melting-season bias, and some had a season-independent bias. Further analysis reveals that the model initialization is the crucial prerequisite for skillful subseasonal sea ice prediction. For those systems with the most realistic initialization, the model physics dictates the propagation of initialization errors and, consequently, the temporal length of predictive skill. Additionally, we found that the SPS-characterized prediction skill could be improved by increasing the ensemble size to gain a more realistic ensemble spread. Based on the C3S systems, we constructed a multi-model forecast from the above principles. This forecast consistently demonstrated a superior prediction skill compared to individual dynamical systems or statistical observation-based benchmarks. In summary, our results elucidate the most important factors (i.e., the model initialization and the model physics) affecting the currently available subseasonal Antarctic sea ice prediction systems and highlighting the opportunities to improve them significantly.

  • The rapid diversification of notothenioid fishes in the waters surrounding the Antarctic continent is a prime example of the process of adaptive radiation. Within around 10 million years, Antarctic notothenioids have diversified into over 100 species with a broad range of lifestyles and ecological adaptations. However, the exact number of species within this radiation has long been unclear. Particularly challenging is the taxonomy of the genus Channichthys, for which between one and nine species have been recognized by different authors. The putative species from this genus are known from a limited number of representative specimens, of which most were sampled decades ago. Here, we investigated the mitochondrial genomes of museum specimens representing the four recently recognized species Unicorn Icefish (C. rhinoceratus), Red Icefish (C. rugosus), Sailfish Pike (C. velifer), and Charcoal Icefish (C. panticapaei), complemented by morphological analyses. All analyzed specimens were collected in the 1960s and 1970s and fixed in formaldehyde, and their DNA has thus been heavily degraded. Applying ancient-DNA protocols for DNA extraction and single-stranded library preparation, we were nevertheless able to obtain sufficient endogenous DNA to reconstruct the mitochondrial genomes of one specimen of each species. These mitochondrial genome sequences were nearly identical for the three specimens assigned to Unicorn Icefish, Red Icefish, and Sailfish Pike, while greater mitochondrial divergence was observed for the Charcoal Icefish specimens. We discuss possible explanations of the contrast between these molecular results and the recognizable morphological variation found among the four species, and recommend that at least the Charcoal Icefish be included the list of valid icefish and notothenioid species.Competing Interest StatementThe authors have declared no competing interest.

  • Background: Plankton is the essential ecological category that occupies the lower levels of aquatic trophic networks, representing a good indicator of environmental change. However, most studies deal with distribution of single spe- cies or taxa and do not take into account the complex of biological interactions of the real world that rule the ecologi- cal processes. Results: This study focused on analyzing Antarctic marine phytoplankton, mesozooplankton, and microzooplankton, examining their biological interactions and co-existences. Field data yielded 1053 biological interaction values, 762 coexistence values, and 15 zero values. Six phytoplankton assemblages and six copepod species were selected based on their abundance and ecological roles. Using 23 environmental descriptors, we modelled the distribution of taxa to accurately represent their occurrences. Sampling was conducted during the 2016–2017 Italian National Antarctic Programme (PNRA) ‘P-ROSE’ project in the East Ross Sea. Machine learning techniques were applied to the occurrence data to generate 48 predictive species distribution maps (SDMs), producing 3D maps for the entire Ross Sea area. These models quantitatively predicted the occurrences of each copepod and phytoplankton assemblage, providing crucial insights into potential variations in biotic and trophic interactions, with significant implications for the man- agement and conservation of Antarctic marine resources. The Receiver Operating Characteristic (ROC) results indi- cated the highest model efficiency, for Cyanophyta (74%) among phytoplankton assemblages and Paralabidocera antarctica (83%) among copepod communities. The SDMs revealed distinct spatial heterogeneity in the Ross Sea area, with an average Relative Index of Occurrence values of 0.28 (min: 0; max: 0.65) for phytoplankton assemblages and 0.39 (min: 0; max: 0.71) for copepods. Conclusion: The results of this study are essential for a science-based management for one of the world’s most pris- tine ecosystems and addressing potential climate-induced alterations in species interactions. Our study emphasizes the importance of considering biological interactions in planktonic studies, employing open access and machine learning for measurable and repeatable distribution modelling, and providing crucial ecological insights for informed conservation strategies in the face of environmental change.

  • The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales.

  • Southern Ocean phytoplankton form the base of the Antarctic food web, influencing higher trophic levels through biomass and community structure. We examined phytoplankton distribution and abundance in the Indian Sector of the Southern Ocean during austral summer as part a multidisciplinary ecosystem survey: Trends in Euphausiids off Mawson, Predators and Oceanography (TEMPO, 2021). Sampling covered six meridional transects from 55-80°E, and from 62°S or 63°S to the ice edge. To determine phytoplankton groups, CHEMTAX analysis was undertaken on pigments measured using HPLC. Diatoms were the dominant component of phytoplankton communities, explaining 56% of variation in chlorophyll a (Chl a), with haptophytes also being a major component. Prior to sampling the sea ice had retreated in a south-westerly direction, leading to shorter ice-free periods in the west (< 44 days, ≤65°E) compared to east (> 44 days, ≥70°E), inducing a strong seasonal effect. The east was nutrient limited, indicated by low-iron forms of haptophytes, and higher silicate:nitrate drawdown ratios (5.1 east vs 4.3 west), pheophytin a (phaeo) concentrations (30.0 vs 18.4 mg m-2) and phaeo:Chl a ratios (1.06 vs 0.53). Biological influences were evident at northern stations between 75-80°E, where krill “super-swarms” and feeding whales were observed. Here, diatoms were depleted from surface waters likely due to krill grazing, as indicated by high phaeo:Chl a ratios (> 0.75), and continued presence of haptophytes, associated with inefficient filtering or selective grazing by krill. Oceanographic influences included deeper mixed layers reducing diatom biomass, and a bloom to the north of the southern Antarctic Circumpolar Current Front in the western survey area thought to be sinking as waters flowed from west to east. Haptophytes were influenced by the Antarctic Slope Front with high-iron forms prevalent to the south only, showing limited iron transfer from coastal waters. Cryptophytes were associated with meltwater, and greens (chlorophytes + prasinophytes) were prevalent below the mixed layer. The interplay of seasonal, biological and oceanographic influences on phytoplankton populations during TEMPO had parallels with processes observed in the BROKE and BROKE-West voyages conducted 25 and 15 years earlier, respectively. Our research consolidates understanding of the krill ecosystem to ensure sustainable management in East Antarctic waters.

  • The polar regions are facing a wide range of compounding challenges, from climate change to increased human activity. Infrastructure, rescue services, and disaster response capabilities are limited in these remote environments. Relevant and usable weather, water, ice, and climate (WWIC) information is vital for safety, activity success, adaptation, and environmental protection. This has been a key focus for the World Meteorological Organization’s (WMO) Polar Prediction Project (PPP), and in particular its “Societal and Economic Research and Applications” (PPP-SERA) Task Team, which together over a decade have sought to understand polar WWIC information use in relation to operational needs, constraints, and decision contexts to inform the development of relevant services. To understand research progress and gaps on WWIC information use during the PPP (2013–23), we undertook a systematic bibliometric review of aligned scholarly peer-reviewed journal articles (n = 43), examining collaborations, topics, methods, and regional differences. Themes to emerge included activity and context, human factors, information needs, situational awareness, experience, local and Indigenous knowledge, and sharing of information. We observed an uneven representation of disciplinary backgrounds, geographic locations, research topics, and sectoral foci. Our review signifies an overall lack of Antarctic WWIC services research and a dominant focus on Arctic sea ice operations and risks. We noted with concern a mismatch between user needs and services provided. Our findings can help to improve WWIC services’ dissemination, communication effectiveness, and actionable knowledge provision for users and guide future research as the critical need for salient weather services across the polar regions remains beyond the PPP. Significance Statement Every day, people in the Arctic and Antarctic use weather, water, ice, and climate information to plan and carry out outdoor activities and operations in a safe way. Despite advances in numerical weather prediction, technology, and product development, barriers to accessing and effectively communicating high-quality usable observations, forecasts, and actionable knowledge remain. Poorer services, prediction accuracy, and interpretation are exacerbated by a lack of integrated social science research on relevant topics and a mismatch between the services provided and user needs. As a result, continued user engagement, research focusing on information use, risk communication, decision-making processes, and the application of science for services remain highly relevant to reducing risks and improving safety for people living, visiting, and working in the polar regions.

  • The ongoing global climate crisis increases temperatures in polar regions faster and with greater magnitude than elsewhere. The decline of Arctic sea ice opens up new passages, eventually leading to higher anthropogenic activities such as shipping, fishing, and mining. Climate change and anthropogenic activities will increase contaminant transport from temperate to Arctic regions. The shipping industry uses copper as an antifouling coating. Copper is an essential element but becomes toxic at excess concentrations, and its use may inadvertently affect non-target organisms such as copepods. Copper affects copepods by lowering reproductive output, prolonging developmental time, and causing increased mortality. As data on copper sensitivity of polar copepods at low temperatures are rare, we conducted onboard survival experiments with the Arctic region’s most common copepod species (Calanus finmarchicus, C. glacialis, C. hyperboreus). Acute survival tests were done for up to 8 days on individuals in 70 ml bottles at 1 °C with nominal copper concentrations ranging from 3 to 480 μg L−1. We used a reduced General Unified Threshold model for Survival (GUTS) to analyse the data, and placed our results in the context of the few published copper sensitivity data of the Antarctic and temperate copepod species at low temperatures. The sensitivity of Cu exposure was similar between the three Calanus species. However, a model comparison suggests that the tested C. glacialis population is less sensitive than the other two species in our experiments. Compared to published data, the three Arctic species appear slightly less sensitive to copper compared to their Antarctic counterparts but more compared to their temperate ones. Our literature search revealed only a few available studies on the copper sensitivity of polar copepods. In the future, this species group will be exposed to more pollutants, which warrants more studies to predict potential risks, especially given possible interactions with environmental factors.

  • Warmer ocean conditions could impact future ice loss from Antarctica due to their ability to thin and reduce the buttressing of laterally confined ice shelves. Previous studies highlight the potential for a cold to warm ocean regime shift within the sub-shelf cavities of the two largest Antarctic ice shelves—the Filchner–Ronne and Ross. However, how this impacts upstream ice flow and mass loss has not been quantified. Here using an ice sheet model and an ensemble of ocean-circulation model sub-shelf melt rates, we show that transition to a warm state in those ice shelf cavities leads to a destabilization and irreversible grounding line retreat in some locations. Once this ocean shift takes place, ice loss from the Filchner–Ronne and Ross catchments is greatly accelerated, and conditions begin to resemble those of the present-day Amundsen Sea sector—responsible for most current observed Antarctic ice loss—where this thermal shift has already occurred.

Last update from database: 7/1/25, 2:10 AM (UTC)

Explore

Topic

Publication year

Online resource