Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 37 resources
-
This thesis investigates the interaction of the Antarctic ice shelves along the coast of Dronning Maud Land with the ocean circulation in the Eastern Weddell Sea. A set of direct oceanic observations below the Fimbul Ice Shelf, which were acquired during three Antarctic field seasons in the austral summers 2009/10, 2010/11 and 2011/12, is a central element of the presented work. This new oceanographic dataset is complemented by a high-resolution state-of-the-art ice shelf - ocean circulation model. The results provide an estimate of the amount of basal melting at the Fimbul Ice Shelf, and revise the physical processes that determine the ocean heat fluxes over the East Antarctic continental slope. A major finding is that deep-ocean heat fluxes towards the ice are much more constrained than predicted by previous ocean models, causing substantially lower rates of basal melting than earlier suggested. The predicted basal melting is consistent with mass balance estimates from satellite data and implicates that the Fimbul Ice Shelf is currently not subject to rapid basal mass loss. Furthermore, the complex interplay of the processes within the coastal, frontal system, and their respective role in transporting heat for melting towards the ice is examined. The results emphasize the importance of oceanic eddies within the coastal circulation for controlling the inflow of Warm Deep Water into the ice shelf cavities. A realistic representation of the effect of the mesoscale eddy overturning is thus a crucial requirement in order to simulate basal melting along the Weddell Sea coast in the present and future climate. The results also imply that fresh, and solar-heated Antarctic Surface Water plays a central role for the ice shelf cavity exchange. Being produced by sea ice melting at the ocean surface, this water mass directly enters the cavity and increases the melting of shallow ice. Due to its buoyancy, the presence of Antarctic Surface Water also alters the coastal dynamics and regulates the inflow of warm water at depth, thus showing that a more detailed understanding of the role of this water mass for basal melting around Antarctica will need further attention. Finally, the results suggest a direct relationship between the simulated basal melting and only a few deterministic parameters of the coastal circulation, which is used to derive a simple parameterization of for basal melting at the Fimbul Ice Shelf.
-
Soloppvarmet overflatevann er en sentral varmekilde som bidrar til smelting av isbremmen Fimbulisen i Dronning Maud Land.
-
An idealized eddy-resolving numerical model, with topographic features common to the southern Weddell Sea, is constructed to study mechanisms through which warm deep water enters a wide continental shelf with a trough. The open ocean, represented by a 1700 m deep channel, is connected to a 400 m deep shelf with a continental slope. The shelf is narrow (50 km) in the east but widens to 300 km at the center of the model domain. Over the narrow shelf, the slope front is balanced by wind-driven Ekman downwelling and counteracting eddy overturning, favoring on-shelf transport of warm water in summer scenarios when fresher surface water is present. Over the wide shelf, the Ekman downwelling ceases, and the mesoscale eddies relax the front. Inflow of warm water is sensitive to along-shelf salinity gradients and is most efficient when denser water over the wide shelf favors up-slope eddy transport along isopycnals of the V-shaped slope front. Inflow along the eastern side of the trough cannot penetrate the sill region due to potential vorticity constraints, while along the western trough flank, eddy-induced inflow crosses the sill and reaches the ice front. The warm inflow into the trough is sensitive to the density of the outflowing dense shelf water. For weaker winds, absence of the dense water outflow leads to a reversal of the trough circulation and a strong inflow of warm water, while for stronger winds, baroclinic effects become less important and the inflow is similar to experiments including dense water outflow.
-
The mechanisms by which heat is delivered to Antarctic ice shelves are a major source of uncertainty when assessing the response of the Antarctic ice sheet to climate change. Direct observations of the ice shelf-ocean interaction are extremely scarce and in many regions melt rates from ice shelf-ocean models are not constrained by measurements. Our two years of data (2010 and 2011) from three oceanic moorings below the Fimbul Ice Shelf in the Eastern Weddell Sea show cold cavity waters, with average temperatures of less than 0.1°C above the surface freezing point. This suggests low basal melt rates, consistent with remote sensing-based, steady-state mass balance estimates for this sector of the Antarctic coast. Oceanic heat for basal melting is found to be supplied by two sources of warm water entering below the ice: (i) eddy-like bursts of Modified Warm Deep Water that access the cavity at depth for eight months of the record; and (ii) fresh surface water that flushes parts of the ice base with temperatures above freezing during late summer and fall. This interplay of processes implies that basal melting at the Fimbul Ice Shelf cannot simply be parameterized by coastal deep ocean temperatures, but instead appears directly linked to both solar forcing at the surface as well as to the dynamics of the coastal current system.
-
Future mass loss from the East Antarctic Ice Sheet represents a major uncertainty in projections of future sea level rise. Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes, but long-term observations inside the ice shelf cavities are rare. Here, we present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We examine the characteristics of intrusions of modified Warm Deep Water (mWDW) across a sill connecting the cavity to the open ocean and investigate seasonal variability of the circulation and water masses inside the cavity using an optimum multiparameter analysis. In autumn, the water below the 345 m deep central part of the ice shelf is composed of up to 30 % solar-heated, buoyant Antarctic Surface Water (ASW), separating colder Ice Shelf Water from the ice base and affecting the cavity circulation on seasonal timescales. At depth, the occurrence of mWDW is associated with the advection of cyclonic eddies across the sill into the cavity. These eddies reach up to the ice base. The warm intrusions are observed most often from January to March and from September to November, and traces of mWDW-derived meltwater close to the ice base imply an overturning of these warm intrusions inside the cavity. We suggest that this timing is set by both the offshore thermocline depth and the interactions of the Antarctic Slope Current with the ice shelf topography over the continental slope. Our findings provide a better understanding of the interplay between shallow inflows of ASW contributions and deep inflows of mWDW for basal melting at Fimbulisen Ice Shelf, with implications for the potential vulnerability of the ice shelf to climate change.
-
Changes in ocean-driven basal melting have a key influence on the stability of ice shelves, the mass loss from the ice sheet, ocean circulation, and global sea level rise. Coupled ice sheet–ocean models play a critical role in understanding future ice sheet evolution and examining the processes governing ice sheet responses to basal melting. However, as a new approach, coupled ice sheet–ocean systems come with new challenges, and the impacts of solutions implemented to date have not been investigated. An emergent feature in several contributing coupled models to the 1st Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1) was a time-varying oscillation in basal melt rates. Here, we use a recently developed coupling framework, FISOC (v1.1), to connect the modified ocean model ROMSIceShelf (v1.0) and ice sheet model Elmer/Ice (v9.0), to investigate the origin and implications of the feature and, more generally, the impact of coupled modeling strategies on the simulated basal melt in an idealized ice shelf cavity based on the MISOMIP setup. We found the spatial-averaged basal melt rates (3.56 m yr−1) oscillated with an amplitude ∼0.7 m yr−1 and approximate period of ∼6 years between year 30 and 100 depending on the experimental design. The melt oscillations emerged in the coupled system and the standalone ocean model using a prescribed change of cavity geometry. We found that the oscillation feature is closely related to the discretized ungrounding of the ice sheet, exposing new ocean, and is likely strengthened by a combination of positive buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and the frequent coupling of ice geometry and ocean evolution. Sensitivity tests demonstrate that the oscillation feature is always present, regardless of the choice of coupling interval, vertical resolution in the ocean model, tracer properties of cells ungrounded by the retreating ice sheet, or the dependency of friction velocities to the vertical resolution. However, the amplitude, phase, and sub-cycle variability of the oscillation varied significantly across the different configurations. We were unable to ultimately determine whether the feature arises purely due to numerical issues (related to discretization) or a compounding of multiple physical processes amplifying a numerical artifact. We suggest a pathway and choices of physical parameters to help other efforts understand the coupled ice sheet–ocean system using numerical models.
-
The buttressing potential of ice shelves is modulated by changes in subshelf melting, in response to changing ocean conditions. We analyze the temporal variability in subshelf melting using an autonomous phase-sensitive radio-echo sounder near the grounding line of the Roi Baudouin Ice Shelf in East Antarctica. When combined with additional oceanographic evidence of seasonal variations in the stratification and the amplification of diurnal tides around the shelf break topography (Gunnerus Bank), the results suggest an intricate mechanism in which topographic waves control the seasonal melt rate variability near the grounding line. This mechanism has not been considered before and has the potential to enhance local melt rates without advecting different water masses. As topographic waves seem to strengthen in a stratified ocean, the freshening of Antarctic surface water, predicted by observations and models, is likely to increase future basal melting in this area.
-
Abstract Solar heated, fresh Antarctic Surface Water (ASW) is a permanent feature along the Eastern Weddell Sea (EWS) coast in summer down to a depth of roughly 200 m. Recently, ASW has been observed beneath the Fimbul Ice Shelf, suggesting that it might play an important role in basal melting. We propose that wind-driven coastal downwelling is the main mechanism that spreads ASW beneath the ice shelf in this sector of Antarctica. We validate this hypothesis with observations, scaling analyses, and numerical modeling, along three principle lines: (i) data analyses of about 1500 salinity profiles collected by instrumented seals indicate that the observed freshening of the coastal water column is likely explained by the on-shore Ekman transport and subsequent downwelling of ASW; (ii) an analytical model of the coastal momentum balance indicates that wind-driven downwelling is capable of depressing the buoyant surface water to a depth similar to the ice shelf draft; and (iii) simulations from both idealized and regional eddy-resolving numerical ice shelf/ocean models support our proposition. Our main conclusion is that wind-driven spreading of ASW beneath the ice shelf occurs when downwelling exceeds the depth of the ice shelf base. Furthermore, our study adds to the understanding of the oceanic processes at the Antarctic Slope Front in the EWS, with possible implications for other sectors of Antarctica.
-
Understanding how climate change influences ocean-driven melting of the Antarctic ice shelves is one of the greatest challenges for projecting future sea level rise. The East Antarctic ice shelf cavities host cold water masses that limit melting, and only a few short-term observational studies exist on what drives warm water intrusions into these cavities. We analyse nine years of continuous oceanographic records from below Fimbulisen and relate them to oceanic and atmospheric forcing. On monthly time scales, warm inflow events are associated with weakened coastal easterlies reducing downwelling in front of the ice shelf. Since 2016, however, we observe sustained warming, with inflowing Warm Deep Water temperatures reaching above 0 °C. This is concurrent with an increase in satellite-derived basal melt rates of 0.62 m yr−1, which nearly doubles the basal mass loss at this relatively cold ice shelf cavity. We find that this transition is linked to a reduction in coastal sea ice cover through an increase in atmosphere–ocean momentum transfer and to a strengthening of remote subpolar westerlies. These results imply that East Antarctic ice shelves may become more exposed to warmer waters with a projected increase of circum-Antarctic westerlies, increasing this region’s relevance for sea level rise projections.
-
The Weddell Sea is of global importance in the formation of dense bottom waters associated with sea ice formation and ocean-ice sheet interaction occurring on the shelf areas. In this context, the Weddell Sea boundary current system (BCS) presents a major conduit for transporting relatively warm water to the Weddell Sea ice shelves and for exporting some modified form of Wedell Sea deep and bottom waters into the open ocean. This study investigates the downstream evolution of the structure and the seasonality of the BCS along the Weddell Sea continental slope, combining ocean data collected for the past two decades at three study locations. The interannual-mean geostrophic flow, which follows planetary potential vorticity contours, shifts from being surface intensified to bottom intensified along stream. The shift occurs due to the densification of water masses and the decreasing surface stress that occurs westward, toward the Antarctic Peninsula. A coherent along-slope seasonal acceleration of the barotropic flow exists, with maximum speed in austral autumn and minimum speed in austral summer. The barotropic flow significantly contributes to the seasonal variability in bottom velocity along the tip of the Antarctic Peninsula. Our analysis suggests that the winds on the eastern/northeastern side of the gyre determines the seasonal acceleration of the barotropic flow. In turn, they might control the export of Weddell Sea Bottom Water on seasonal time scales. The processes controlling the baroclinic seasonality of the flow need further investigation.
-
To investigate the role of tides in Weddell Sea ocean-ice shelf melt interactions, and resulting consequences for ocean properties and sea ice interactions, we develop a regional ocean-sea ice model configuration, with time-varying ocean boundary and atmospheric forcing, including the deep open ocean (at 2.5–4 km horizontal resolution), the southwestern continental shelf (≈2.5 km), and the adjacent cavities of eastern Weddell, Larsen, and Filchner-Ronne ice shelves (FRIS, 1.5–2.5 km). Simulated circulation, water mass, and ice shelf melt properties compare overall well with available open ocean and cavity observational knowledge. Tides are shown to enhance the kinetic energy of the time-varying flow in contact with the ice shelves, thereby increasing melt. This dynamically driven impact of tides on net melting is to almost 90% compensated by cooling through the meltwater that is produced but not quickly exported from regions of melting in the Weddell Sea cold-cavity regime. The resulting systematic tide-driven enhancement of both produced meltwater and its refreezing on ascending branches of, especially the FRIS, cavity circulation acts to increase net ice shelf melting (by 50% in respect to the state without tides, ≈50 Gt yr−1). In addition, tides also increase the melt-induced FRIS cavity circulation, and the meltwater export by the FRIS outflow. Simulations suggest attendant changes on the open-ocean southwestern continental shelf, characterized by overall freshening and small year-round sea ice thickening, as well as in the deep southwestern Weddell Sea in the form of a marked freshening of newly formed bottom waters.
-
Understanding changes in Antarctic ice shelf basal melting is a major challenge for predicting future sea level. Currently, warm Circumpolar Deep Water surrounding Antarctica has limited access to the Weddell Sea continental shelf; consequently, melt rates at Filchner-Ronne Ice Shelf are low. However, large-scale model projections suggest that changes to the Antarctic Slope Front and the coastal circulation may enhance warm inflows within this century. We use a regional high-resolution ice shelf cavity and ocean circulation model to explore forcing changes that may trigger this regime shift. Our results suggest two necessary conditions for supporting a sustained warm inflow into the Filchner Ice Shelf cavity: (i) an extreme relaxation of the Antarctic Slope Front density gradient and (ii) substantial freshening of the dense shelf water. We also find that the on-shelf transport over the western Weddell Sea shelf is sensitive to the Filchner Trough overflow characteristics.
-
Ice shelves play an important role in stabilizing the interior grounded ice of the large ice sheets. The thinning of major ice shelves observed in recent years, possibly in connection to warmer ocean waters coming into contact with the ice-shelf base, has focused attention on the ice-ocean interface. Here we reveal a complex network of sub ice-shelf channels under the Fimbul Ice Shelf, Antarctica, mapped using ground-penetrating radar over a 100 km2 grid. The channels are 300–500 m wide and 50 m high, among the narrowest of any reported. Observing narrow channels beneath an ice shelf that is mainly surrounded by cold ocean waters, with temperatures close to the surface freezing point, shows that channelized basal melting is not restricted to rapidly melting ice shelves, indicating that spatial melt patterns around Antarctica are likely to vary on scales that are not yet incorporated in ice-ocean models.
-
We are in a period of rapidly accelerating change across the Antarctic continent and Southern Ocean, with land ice loss leading to sea level rise and multiple other climate impacts. The ice-ocean interactions that dominate the current ice loss signal are a key underdeveloped area of knowledge. The paucity of direct and continuous observations leads to high uncertainty in the glaciological, oceanographic and atmospheric fields required to constrain ice-ocean interactions, and there is a lack of standardised protocols for reconciling observations across different platforms and technologies and modelled outputs. Funding to support observational campaigns is under increasing pressure, including for long-term, internationally coordinated monitoring plans for the Antarctic continent and Southern Ocean. In this Practice Bridge article, we outline research priorities highlighted by the international ice-ocean community and propose the development of a Framework for UnderStanding Ice-Ocean iNteractions (FUSION), using a combined observational-modelling approach, to address these issues. Finally, we propose an implementation plan for putting FUSION into practice by focusing first on an essential variable in ice-ocean interactions: ocean-driven ice shelf melt.
-
Basal melt is a major cause of ice shelf thinning affecting the stability of the ice shelf and reducing its buttressing effect on the inland ice. The Fimbul ice shelf (FIS) in Dronning Maud Land (DML), East Antarctica, is fed by the fast-flowing Jutulstraumen glacier, responsible for 10% of ice discharge from the DML sector of the ice sheet. Current estimates of the basal melt rates of the FIS come from regional ocean models, autosub measurements, and satellite observations, which vary considerably. This discrepancy hampers evaluation of the stability of the Jutulstraumen catchment. Here, we present estimates of basal melt rates of the FIS using ground-based interferometric radar. We find a low average basal melt rate on the order of 1 m/yr, with the highest rates located at the ice shelf front, which extends beyond the continental shelf break. Furthermore, our results provide evidence for a significant seasonal variability.
-
The existence of ice-edge phytoplankton blooms in the Southern Ocean is well described, yet direct observations of the mechanisms of phytoplankton bloom development following seasonal sea-ice melt remain scarce. This study constrains such responses using biological and biogeochemical datasets collected along a coastal-to-offshore transect that bisects the receding sea-ice zone in the Kong Håkon VII Hav (off the coast of Dronning Maud Land). We documented that the biogeochemical growing conditions for phytoplankton vary on a latitudinal gradient of sea-ice concentration, where increased sea-ice melting creates optimal conditions for growth with increased light availability and potentially increased iron supply. The zones of the study area with the least ice cover were associated with diatom dominance, the greatest chlorophyll a concentrations, net community production, and dissolved inorganic carbon drawdown, as well as lower sea surface fugacity of CO2. Together, these associations imply higher potential for an oceanic CO2 sink due, at least in part, to more advanced bloom phase and/or larger bloom magnitude stemming from a relatively longer period of light exposure, as compared to the more ice-covered zones in the study area. From stable oxygen isotope fractions, sea-ice meltwater fractions were highest in the open ocean zone and meteoric meltwater fractions were highest in the coastal and polynya zones, suggesting that potential iron sources may also change on a latitudinal gradient across the study area. Variable phytoplankton community compositions were related to changing sea-ice concentrations, with a typical species succession from sympagic flagellate species (Pyramimonas sp. and Phaeocystis antarctica) to pelagic diatoms (e.g., Dactyliosolen tenuijunctus) observed across the study area. These results fill a spatiotemporal gap in the Southern Ocean, as sea-ice melting plays a larger role in governing phytoplankton bloom dynamics in the future Southern Ocean due to changing sea-ice conditions caused by anthropogenic global warming.
-
The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
Explore
Topic
- Antarktis (9)
- batymetri (4)
- biofysikk (1)
- biogeokjemi (2)
- biologi (3)
- brehylle (4)
- bunnvann (1)
- datainnsamling (1)
- Dronning Maud Land (7)
- forskningsinfrastruktur (1)
- fysikk (2)
- fysisk oseanografi (2)
- fytoplankton (2)
- geofysikk (3)
- geologi (2)
- geovitenskap (2)
- glasiologi (16)
- havis (5)
- havnivå (1)
- havnivåstigning (6)
- havstrømmer (3)
- hydrografi (3)
- innlandsis (12)
- internasjonal samarbeid (1)
- isbre (1)
- isbrem (9)
- isshelf (17)
- issmelting (1)
- kjemi (3)
- klima (3)
- klimaendringer (10)
- klimamodeller (5)
- klimatologi (8)
- kontinentalmargin (1)
- kontinentalsokkel (5)
- kontinentalsokler (1)
- marin biologi (2)
- marine økosystemer (1)
- meteorologi (1)
- miljøendringer (2)
- økosystemer (1)
- oseanografi (21)
- overflatevann (1)
- plankton (1)
- planteplankton (1)
- polarområdene (2)
- satellite bilder (1)
- satellite mikrobølgesensorer (1)
- seismologi (1)
- sjøis (4)
- smelting (7)
- Sørishavet (30)
- tidevann (2)
- Troll forskningsstasjon (1)
- vannmasser (5)
- vannvirvler (3)
- Weddellhavet (12)
Resource type
- Journal Article (36)
- Thesis (1)