Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Resource type

Results 34 resources

  • Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from 13 firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007–2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963–2007/08 being up to 25% different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10–20% over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.

  • The McMurdo Dry Valleys are one of the most arid environments on Earth. Over the soil landscape for the majority of the year, biological and ecosystem processes in the dry valleys are constrained by the low temperatures and limited availability of water. The prevalence of these physical limitations in controlling biological and ecosystem processes makes the dry valleys a climatesensitive system, poised to experience substantial changes following projected future warming. Short-duration increases in summer temperatures are associated with pulses of water from melting ice reserves, including glaciers, snow and permafrost. Such pulses alter soil geochemistry by mobilizing and redistributing soil salts (via enhanced weathering, solubility and mobility), which can alter habitat suitability for soil organisms. Resulting changes in soil community composition or distribution may alter the biogeochemical processes in which they take part. Here, we review the potential impacts of meltwater pulses and present new field data documenting instances of meltwater pulse events that result from different water sources and hydrological patterns, and discuss their potential influence on soil biology and biogeochemistry. We use these examples to discuss the potential impacts of future climate change on the McMurdo Dry Valley soil ecosystem.Keywords: Water pulse; climate change; polar desert; International Polar Year; discrete warming events; soil biogeochemistry.

  • The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg) in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terrestrial environments, little is known about the responsible transformations and transport pathways and the processes that control them. We posit that as in temperate environments, microbial transformations play a key role in mercury geochemical cycling in polar regions by: (1) methylating mercury by one of four proposed pathways, some not previously described; (2) degrading MeHg by activities of mercury resistant and other bacteria; and (3) carrying out redox transformations that control the supply of the mercuric ion, the substrate of methylation reactions. Recent analyses have identified a high potential for mercury-resistant microbes that express the enzyme mercuric reductase to affect the production of gaseous elemental mercury when and where daylight is limited. The integration of microbially mediated processes in the paradigms that describe mercury geochemical cycling is therefore of high priority especially in light of concerns regarding the effect of global warming and permafrost thawing on input of MeHg to polar regions. Keywords: Microbiology; mercury biogeochemistry; redox transformations; polar regions; methylation

  • Despite warm polar climates and low meridional temperature gradients, a number of different high-latitude plankton assemblages were, to varying extents, dominated by endemic species during most of the Paleogene. To better understand the evolution of Paleogene plankton endemism in the high southern latitudes, we investigate the spatiotemporal distribution of the fossil remains of dinoflagellates, i.e., organic-walled cysts (dinocysts), and their response to changes in regional sea surface temperature (SST). We show that Paleocene and early Eocene (∼65–50 Ma) Southern Ocean dinocyst assemblages were largely cosmopolitan in nature but that a distinct switch from cosmopolitan-dominated to endemic-dominated assemblages (the so-called “transantarctic flora”) occurred around the early-middle Eocene boundary (∼50 Ma). The spatial distribution and relative abundance patterns of this transantarctic flora correspond well with surface water circulation patterns as reconstructed through general circulation model experiments throughout the Eocene. We quantitatively compare dinocyst assemblages with previously published TEX86–based SST reconstructions through the early and middle Eocene from a key locality in the southwest Pacific Ocean, ODP Leg 189 Site 1172 on the East Tasman Plateau. We conclude that the middle Eocene onset of the proliferation of the transantarctic flora is not linearly correlated with regional SST records and that only after the transantarctic flora became fully established later in the middle Eocene, possibly triggered by large-scale changes in surface-ocean nutrient availability, were abundances of endemic dinocysts modulated by regional SST variations.

  • We describe the upper ocean thermal structure and surface nutrient concentrations between New Zealand and Antarctica along five transects that cross the Subantarctic Front, the Polar Front and the southern Antarctic Circumpolar Current front. The surface water thermal structure is coupled with variations in surface nutrient concentrations, making water masses identifiable by both temperature and nutrient ranges. In particular, a strong latitudinal gradient in orthosilicate concentration is centred at the Polar Front. On the earlier sections, which extend south-west from the Campbell Plateau, orthosilicate increases sharply southward from 10-15 to 50-55µmol l-1, between 58°S and 60°S, while surface temperature drops from 7°C to 2°C. Nitrate increases more regularly toward the south, with concentrations ranging from 10-12µmol l-1 at 54°S to 25-30µmol l-1 at 66°S. The same features are observed during the later transects between New Zealand and the Ross Sea, but the sharp silica and surface temperature gradients are shifted between 60°S and 64°S. Both temporal and spatial factors may influence the observed variability. The January transect suggests an uptake of silica, orthophosphate and nitrate between 63°S and 70°S over the intervening month, with an average depletion near 37%, 44% and 29%, respectively. An N/P apparent drawdown ratio of 8.8±4.1 and an Si/N apparent drawdown ratio >1 suggests this depletion results from a seasonal diatom bloom. A southward movement of the oceanic fronts between New Zealand and the Ross Sea relative to prior measurements is consistent with reports of recent warming and changes in the Antarctic Circumpolar Current. Keywords: Southern Ocean, nutrients, silica belt, Antarctic Circumpolar Current, expendable bathythermograph.

  • These two edited volumes, which cover much of the same ground, both begin from a common premise: polar tourism, as its been experienced by wealthy travellers for over a century, has a very definite shelf life. With the acceleration of global climate change, the Arctic and Antarctic are being changed, changed rapidly, perhaps permanently and, if one pays attention to the news, seemingly by the day. When combined with popular documentaries and feature films like An inconvenient truth, March of the penguins and Happy feet potential polar tourists have been sensitized to see the polar regions not as implacably hostile wastes once challenged only by the likes of Nansen, Amundsen, Scott and Shackleton but as irreplaceably fragile zones that, once lost, will take some essential part of the planet with them.

  • One of the priorities of the fourth International Polar Year (IPY) was to increase awareness of the polar regions and polar science among the general public through education, communication and other forms of outreach. This paper reports on the media coverage of Princess Elisabeth Antarctica (PEA), Belgium’s ‘‘zero-emission’’ Antarctic research station designed by the nonprofit International Polar Foundation (IPF) to run on wind and solar energy and to employ state-of-the-art forms of energy management and other ‘‘green’’ technology. This paper provides background information on PEA, a review of IPF’s media strategy for the project, a description of media coverage of the station and a discussion of the way in which the IPF’s main messages were reported in the media. IPF staff surveyed approximately 300 media reports released between February 2004, when the PEA project was announced to the general public, and June 2010, when the IPF presented their findings at the IPY conference in Oslo. PEA was featured 580 times in print and web media in Belgium, and 303 times outside Belgium. Major international agencies such as the Associated Press, Agence France Presse, the BBC, Al-Jazeera and Reuters covered the project. On television and radio, PEA was featured in news broadcasts from all four major television networks in Belgium, most major radio stations and 34 different television and radio news outlets outside Belgium. The paper concludes that the media coverage for PEA was significant and suggests reasons why the project was so widely reported. Keywords: Media and outreach; media strategy; Antarctic research stations; energy management system; renewable energy; reducing environmental footprint

  • The ecosystems of the western Antarctic Peninsula, experiencing amongst the most rapid trends of regional climate warming worldwide, are important “early warning” indicators for responses expected in more complex systems elsewhere. Central among responses attributed to this regional warming are widely reported population and range expansions of the two native Antarctic flowering plants, Deschampsia antarctica and Colobanthus quitensis. However, confirmation of the predictions of range expansion requires baseline knowledge of species distributions. We report a significant southwards and westwards extension of the known natural distributions of both plant species in this region, along with several range extensions in an unusual moss community, based on new survey work in a previously unexamined and un-named low altitude peninsula at 69º22.0’S 71º50.7’W in Lazarev Bay, north-west Alexander Island, southern Antarctic Peninsula. These plant species therefore have a significantly larger natural range in the Antarctic than previously thought. This site provides a potentially important monitoring location near the southern boundary of the region currently demonstrated to be under the influence of rapidly changing climate trends. Combined radiocarbon and lead isotope radiometric dating suggests that this location was most likely deglaciated sufficiently to allow peat to start accumulating towards the end of the 19th century, which we tentatively link to a phase of post-1870 climate amelioration. We conclude that the establishment of vegetation in this location is unlikely to be linked to the rapid regional warming trends recorded along the Antarctic Peninsula since the mid-20th century. Antarctic plants, distribution limits, peat accumulation, dating.

  • The manner by which meltwater drains through a glacier is critical to ice dynamics, runoff characteristics, and water quality. However, much of the contemporary knowledge relating to glacier hydrology has been based upon, and conditioned by, understanding gleaned from temperate valley glaciers. Globally, a significant proportion of glaciers and ice sheets exhibit nontemperate thermal regimes. The recent, growing concern over the future response of polar glaciers and ice sheets to forecasts of a warming climate and lengthening summer melt season necessitates recognition of the hydrological processes in these nontemperate ice masses. It is therefore timely to present an accessible review of the scientific progress in glacial hydrology where nontemperate conditions are dominant. This review provides an appraisal of the glaciological literature from nontemperate glaciers, examining supraglacial, englacial, and subglacial environments in sequence and their role in hydrological processes within glacierized catchments. In particular, the variability and complexity in glacier thermal regimes are discussed, illustrating how a unified model of drainage architecture is likely to remain elusive due to structural controls on the presence of water. Cold ice near glacier surfaces may reduce meltwater flux into the glacier interior, but observations suggest that the transient thermal layer of near surface ice holds a hydrological role as a depth-limited aquifer. Englacial flowpaths may arise from the deep incision of supraglacial streams or the propagation of hydrofractures, forms which are readily able to handle varied meltwater discharge or act as locations for water storage, and result in spatially discrete delivery of water to the subglacial environment. The influence of such drainage routes on seasonal meltwater release is explored, with reference to summer season upwellings and winter icing formation. Moreover, clear analogies emerge between nontemperate valley glacier and ice sheet hydrology, the discussion of which indicates how persistent reassessment of our conceptualization of glacier drainage systems is required. There is a clear emphasis that continued, integrated endeavors focused on process glaciology at nontemperate glaciers are a scientific imperative to augmenting the existing body of research centered on ice mass hydrology.

  • Southern summer low-ozone events (LOEs) are examined using Met Office ozone analyses for 2005–2007. At 31 hPa, tongues of low-ozone air are pulled out of the polar region and extend to lower latitudes. Low tongues are also seen at 100 hPa, but there the low ozone is transported from low to high latitudes. These low tongues are frequently superimposed on one another, meaning that there are often also reductions in total ozone. What is striking is that at high latitudes, summer total ozone is typically lower over the Weddell Sea than at other longitudes. The low-ozone tongues at 31 and 100 hPa are consistent with transport associated with planetary waves. Daily geopotential height fields show a poleward and westward wave tilt with height, indicating the presence of baroclinic waves. The tilt enables the superimposition of the low-ozone tongues at 100 and 31 hPa. Filtered geopotential height anomalies reveal the presence of waves reported in other studies and indicate the connection between tropospheric and stratospheric wave dynamics in driving the LOEs. There is also a high connection between the LOEs and ultraviolet (UV) Index. The Weddell Sea region gets up to 20–30% more UV than the zonal mean, and the tip of South America gets about 10–25% more. There have been numerous studies of the impacts of increased UV on the Antarctic marine ecosystem during the springtime ozone hole, and our results indicate there is a case for these studies being extended to the summer LOEs.

  • Antarctic plesiosaurs are known from the Upper Cretaceous López de Bertodano and Snow Hill Island formations (Campanian to upper Maastrichtian), which crop out within the James Ross Basin region of the Antarctic Peninsula. Here we describe the first plesiosaur fossils from the Lachman Crags Member of the Santa Marta Formation, north-western James Ross Island. This material constitutes the stratigraphically oldest plesiosaur occurrence presently known from Antarctica, extending the occurrence of plesiosaurians in this continent back to Santonian times (86.3-83.5 Mya). Furthermore, MN 7163-V represents the first plesiosaur from this region not referable to the Elasmosauridae nor Aristonectes, indicating a greater diversity of this group of aquatic reptiles in Antarctica than previously suspected. Keywords: James Ross Island; Antarctica; plesiosauria; Late Cretaceous; Museu Nacional.

  • Har livet på Jorda blitt ført hit fra tidligere liv på planeten Mars? I 1996 hevdet en gruppe forskere at en meteoritt fra Mars faktisk inneholdt spor etter organisk liv. Hvis dette virkelig var tilfelle, ville det medføre en revolusjon for vårt syn på verden og det univers vi befinner oss i. Men vitenskapsfolk besitter sunn skepsis, og hos dem kommer ikke tvilen tiltalte til gode. Nå mener de fleste ekspertene at funnet var for godt til å være sant.

  • A fast-flowing tributary of Recovery ice stream penetrates more than 500 km into the interior of East Antarctica. Recent satellite-based studies found surface features in the onset area of this tributary that indicate a significant subglacial hydraulic system, including four large smooth basins, the typical surface expression of large subglacial lakes, as well as eleven smaller areas over which ice-sheet surface elevations rapidly changed by discharge/filling of subglacial water. Here we present the first ice-penetrating radar evidence of subglacial conditions in this area. We identified a distinct ice-water interface only over a limited area within the boundaries of the investigated large smooth basins, previously hypothesized to be water-filled lakes. The radar characteristics in some areas are similar to those of a drained lake, indicating that parts of the bed are wet, but not a typical lake. We also find evidence for discrete water bodies outside of the lake boundaries. The lines of evidence indicate that the northern most two Recovery Lakes have recently drained.

  • We report the isolation and identification of bacteria that produce extracellular cold-active proteases, obtained from water samples collected near the Uruguayan Antarctic Base on King George Island, South Shetlands. The bacteria belonged to the genera Pseudomonas (growth between 4 and 30°C) and Flavobacterium (growth between 4 and 18°C). In all cases, extracellular protease production was evident when reaching the stationary phase at 18 and 4ºC, but was not detected at 30ºC. The zymogram revealed the secretion of one extracellular protease per isolate, each with different relative electrophoretic mobility. The extracellular proteases produced at 4ºC showed thermal activity and stability at 30ºC. Both activity and stability at temperature higher that 10ºC have no physiological meaning because the isolates do not experience such temperatures in the Antarctic environment; however, the possible ecological value of cold-active and -stable extracellular proteases is discussed. Keywords: Antarctic, cold-active enzymes, protease.

  • We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.

  • Radar power returned from ice-sheet beds has been widely accepted as an indicator of bed conditions. However, the bed returned power also depends on englacial attenuation, which is primarily a function of ice temperature. Here, using a one-dimensional attenuation model, it is demonstrated that, in most cases, variations in bed returned power are dominated by variations in englacial attenuation, rather than bed reflectivity. Both accumulation rate and geothermal flux anomalies can interfere with the interpretation. With the consequence, analytical radar algorithms that have been widely accepted likely yield false delineations of wet/dry beds. More careful consideration is needed when diagnosing bed conditions. Spatial patterns of shallow englacial radar reflectors can be used as a proxy for accumulation rates, which affect ice temperature and thus returned power. I argue that it is necessary to simultaneously interpret the returned power and englacial-reflector patterns to improve the bed diagnosis.

  • We report the first ground-based passive microwave observations made from Troll station, Antarctica, which show enhanced mesospheric nitric oxide (NO) volume mixing ratio reaching levels of 1.2 ppmv, or 2–3 orders of magnitude above background, at 70–80 km during small, relatively isolated geomagnetic storms in 2008. The mesospheric NO peaked 2 days after enhanced NO at higher altitudes (110–150 km) measured by the SABER satellite, and 2 days after peaks in the >30 keV and >300 keV electron flux measured by POES, although the 300 keV electron flux remained high. High time resolution data shows that mesospheric NO was enhanced at night and decayed during the day and built up to high levels over a period of 3–4 days. The altitude profile of mesospheric NO suggests direct production by ∼300 keV electron precipitation. Simulations using the Sodankylä Ion and Neutral Chemistry model show that the delay between thermospheric and mesospheric NO enhancements was primarily a result of the weaker production rate at lower altitudes by ∼300 keV electrons competing against strong day-time losses.

  • There is a growing concern about the ability to produce enough nutritious food to feed the global human population in this century. Environmental conflicts and a limited freshwater supply constrain further developments in agriculture; global fisheries have levelled off, and aquaculture may have to play a more prominent role in supplying human food. Freshwater is important, but it is also a major challenge to cultivate the oceans in an environmentally, economically and energy-friendly way. To support this, a long-term vision must be to derive new sources of feed, primarily taken from outside the human food chain, and to move carnivore production to a lower trophic level. The main aim of this paper is to speculate on how feed supplies can be produced for an expanding aquaculture industry by and beyond 2050 and to establish a roadmap of the actions needed to achieve this. Resources from agriculture, fish meal and fish oil are the major components of pellet fish feeds. All cultured animals take advantage of a certain fraction of fish meal in the feed, and marine carnivores depend on a supply of marine lipids containing highly unsaturated fatty acids (HUFA, with ≥3 double bonds and ≥20 carbon chain length) in the feed. The availability of HUFA is likely the main constraint for developing carnivore aquaculture in the next decades. The availability of fish meal and oil will decrease, and the competition for plant products will increase. New harvested resources are herbivore zooplankton, such as Antarctic krill and red feed, and new produced resources are macroalgae, transgenic higher HUFA-producing plants and bacterial biomass. These products are to a limited extent components of the human food chain, and all these resources will help to move cultured carnivores to lower trophic levels and can thereby increase the production capacity and the sustainability of the production. Mariculture can only become as successful as agriculture in the coming century if carnivores can be produced at around Trophic Level 2, based mainly on plant resources. There is little potential for increasing the traditional fish meal food chain in aquaculture. KEYWORDS: Global aquaculture · Mariculture · Feed resources · Marine lipids · HUFA · Trophic level

  • Determining the present precise location of Amundsen's tent is a function of 1) the precision of Amundsen's navigation in 1911, 2) the flow of ice since then, and 3) the amount of burial by intervening snow fall. These factors are discussed and it is concluded that the best location that can be given for the tent in December 2011 is 89° 58′ 51″ S, 46° 14′ E, and lying 17 m below the present snow surface. The uncertainty in the position is 0.3 km, and is mainly related to uncertainties in the original positioning. It can be concluded with high certainty that the tent lies between 1.8 and 2.5 km from the South Pole.

Last update from database: 3/1/25, 3:17 AM (UTC)

Explore

Topic

Resource type

Online resource