Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Topic

Results 24 resources

  • An object-based method for automatic iceberg detection has been applied to Advanced Synthetic Aperture Radar images in the Amundsen Sea Embayment (ASE), Antarctica. The images were acquired between 1 January 2006 and 8 April 2012 under varying meteorological, oceanographic and sea-ice conditions. During this time period, the icebergs were counted (average 1370 ± 50) and their surface area was estimated (average 1537.5 km2). The average surface area was about 2.5 times larger than the annual calved area (620 km2), indicating that the average iceberg age in the ASE is about 2.5 years, which was confirmed by observed residence times based on drift tracks. Most of the ASE icebergs were less than 1500 m long, and almost 90% of them were smaller than 2 km2. The proportion of small- and medium-sized icebergs (84.4%) was significantly higher than in the open ocean, where large icebergs (>10 km2) account for nearly the whole iceberg surface area. The opposite was true for the freshly calved icebergs in the ASE. The data indicate that the creation of icebergs in the ASE is dominated by steady small- to medium-scale calving from ice shelves fringing the embayment. In addition, rare calving events of giant icebergs occur on a decadal timescale. There is also some import of icebergs from the Bellingshausen Sea further east along the coast, in particular after large calving events there.

  • In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron-rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas.

  • The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.

  • Abstract Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest-known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea-ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter-annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea-ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.

  • Microorganisms confined to annual sea ice in the Southern Ocean are exposed to highly variable oxygen and carbonate chemistry dynamics because of the seasonal increase in biomass and limited exchange with the underlying water column. For sea-ice algae, physiological stress is likely to be exacerbated when the ice melts; however, variation in carbonate speciation has rarely been monitored during this important state-transition. Using pulse amplitude modulated fluorometry (Imaging-PAM, Walz), we documented in situ changes in the maximum quantum yield of photosystem II ( F v / F m ) of sea-ice algae melting out into seawater with initial pH values ranging from 7.66 to 6.39. Although the process of ice-melt elevated seawater pH by 0.2–0.55 units, we observed a decrease in F v / F m between 0.02 and 0.06 for each unit drop in pH during real-time fluorescence imaging. These results are considered preliminary but provide context for including carbonate chemistry monitoring in the design of future sea ice state-transition experiments. Imaging-PAM is a reliable technology for determining F v / F m , but is of limited use for obtaining additional photosynthetic parameters when imaging melting ice.

  • The multi-temporal scales of two physical characteristics (areas and occurrence time) of the Ross Sea Polynya (RSP) in Antarctica were analysed using a sea-ice concentration data set (1979–2014) derived from the Scanning Multichannel Microwave Radiometer, the Special Sensor Microwave Imager and Sensor Microwave Imager Sounder. Then, the Ensemble Empirical Mode Decomposition (EEMD) was applied to the data sets to decompose signals into finite numbers of intrinsic mode functions and a residual mode: long time trend. This approach allowed us to understand the long-term variability of the RSP area and occurrence in response to atmospheric forcing through teleconnections between low and high latitudes by comparing the Nino3.4 and Southern Annular Mode (SAM) indices. The nonlinear trend of the RSP areas derived from the EEMD residual had an upward trending shift in the early 1990s and was fairly consistent with the nonlinear trend of Nino3.4. However, the trend of RSP occurrence time progressively increased and had a significant effect on the long time scale. The trend of the RSP area is significantly correlated (+0.98) with the ratio of the trend of the meridional to zonal wind components related with the nonlinearity of Nino3.4, suggesting that meridional wind stress dominated the changes of the polynya area in the Ross Sea. In addition, the nonlinear trends between the SAM and RSP occurrence time show a strong positive correlation, contributing to the earlier onset of polynya expansion and delayed connection with the open ocean owing to enhanced southerly winds.

  • In polar seas, the seasonal melting of ice triggers the development of an open-waterecosystem characterized by short-lived algal blooms, the grazing and development of zooplank-ton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of icemelt generates temporal variability in the development of these events across the habitat, offeringa natural framework to assess how foraging marine predators respond to the spring phenology.We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarcticawith synopticremote-sensing data on sea ice and chlorophyll ato test how the development of melting ice andprimary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passagetime revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. Theseareas changed position or disappeared within 10 to 30 d and showed no spatial consistency amongyears. Generalized additive model (GAM) analyses suggested that the presence of foraging areaswas related to the time since ice melt. Antarctic petrels concentrated their search effort in meltingareas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found nosignificant relationship between search effort and chlorophyll aconcentration. We suggest thatthese foraging patterns were related to the vertical distribution and profitability of the main prey,the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in theSouthern Ocean shapes the development of a highly patchy and elusive food web, underscoringthe importance of flexible foraging strategies among top predators. KEY WORDS: Area-restricted search · Euphausia superba· Marginal ice zone · Phytoplanktonbiomass · Procellariiformes · Sea ice dynamics · Southern Ocean · Thalassoica antarctica

  • We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as “signal carriers,” transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.

  • The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS) to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL) profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO), a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO’s high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice. Keywords: Remotely piloted aircraft systems; unmanned aerial vehicles; Weddell Sea; polar meteorology; Antarctic; boundary layer meteorology.

  • Assessments of benthic coastal seawater carbonate chemistry in Antarctica are sparse. The studies have generally been short in duration, during the austral spring/summer, under sea ice, or offshore in ice-free water. Herein we present multi-frequency measurements for seawater collected from the shallow coastal benthos on a weekly schedule over one year (May 2012–May 2013), daily schedule over three months (March–May 2013) and semidiurnal schedule over five weeks (March–April 2013). A notable pH increase (max pH = 8.62) occurred in the late austral spring/summer (November–December 2012), coinciding with sea-ice break-out and subsequent increase in primary productivity. We detected semidiurnal variation in seawater pH with a maximum variation of 0.13 pH units during the day and 0.11 pH units during the night. Daily variation in pH is likely related to biological activity, consistent with previous research. We calculated the variation in dissolved inorganic carbon (DIC) over each seawater measurement frequency, focusing on the primary DIC drivers in the Palmer Station region. From this, we estimated net biological activity and found it accounts for the greatest variations in DIC. Our seasonal data suggest that this coastal region tends to act as a carbon dioxide source during austral winter months and as a strong sink during the summer. These data characterize present-day seawater carbonate chemistry and the extent to which these measures vary over multiple time scales. This information will inform future experiments designed to evaluate the vulnerability of coastal benthic Antarctic marine organisms to ocean acidification. Keywords: Antarctica; aragonite; calcite; pH; seawater chemistry; total alkalinity.

  • The climate-driven collapses of the Larsen A and B ice shelves have opened up new regions of the coastal Antarctic to the influence of sea ice resulting in increases in seasonal primary production. In this study, passive microwave remote sensing of sea ice concentration and satellite imagery of ocean color are employed to quantify the magnitude of and variability in open water area and net primary productivity (NPP) in the Larsen embayments between 1997 and 2011. Numerical model output provides context to analyze atmospheric forcing on the coastal ocean. Following ice shelf disintegration the embayments function as coastal, sensible heat polynyas. The Larsen A and B are as productive as other Antarctic shelf regions, with seasonally averaged daily NPP rates reaching 1232 and 1127 mg C m−2 d−1 and annual rates reaching 200 and 184 g C m−2 yr−1, respectively. A persistent cross-shelf gradient in NPP is present with higher productivity rates offshore, contrasting with patterns observed along the West Antarctic Peninsula. Embayment productivity is intimately tied to sea ice dynamics, with large interannual variability in NPP rates driven by open water area and the timing of embayment opening. Opening of the embayment is linked to periods of positive Southern Annular Mode and stronger westerlies, which lead to the vertical deflection of warm, maritime air over the peninsula and down the leeward side causing increases in surface air temperature and wind velocity. High productivity in these new polynyas is likely to have ramifications for organic matter export and marine ecosystem evolution.

  • Understanding the distribution and foraging ecology of major consumers within pelagic systems, specifically in relation to physical parameters, can be important for the management of bentho-pelagic systems undergoing rapid change associated with global climate change and other anthropogenic disturbances such as fishing (i.e., the Antarctic Peninsula and Scotia Sea). We tracked 11 adult male southern elephant seals (Mirounga leonina), during their five-month post-moult foraging migrations from King George Island (Isla 25 de Mayo), northern Antarctic Peninsula, using tags capable of recording and transmitting behavioural data and in situ temperature and salinity data. Seals foraged mostly within the Weddell–Scotia Confluence, while a few foraged along the western Antarctic Peninsula shelf of the Bellingshausen Sea. Mixed model outputs suggest that the at-sea behaviour of seals was associated with a number of environmental parameters, especially seafloor depth, sea-ice concentrations and the temperature structure of the water column. Seals increased dive bottom times and travelled at slower speeds in shallower areas and areas with increased sea-ice concentrations. Changes in dive depth and durations, as well as relative amount of time spent during the bottom phases of dives, were observed in relation to differences in overall temperature gradient, likely as a response to vertical changes in prey distribution associated with temperature stratification in the water column. Our results illustrate the likely complex influences of bathymetry, hydrography and sea ice on the behaviour of male southern elephant seals in a changing environment and highlight the need for region-specific approaches to studying environmental influences on behaviour. Keywords: Southern elephant seals; foraging ecology; satellite-relay data loggers; King George Island; Isla 25 de Mayo; at-sea behaviour.

  • A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea-ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self-describing file format, (2) ISO 19115-2 compliant collection-level metadata, (3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different. Keywords: Sea ice; Arctic and Antarctic oceans; climate data record; evaluation; passive microwave remote sensing.

  • Measurements of total alkalinity (AT) and pH were made in the Ross Sea in January–February 2008 in order to characterize the carbonate system in the Ross Sea and to evaluate the variability associated with different water masses. The main water masses of the Ross Sea, Antarctic Surface Water, High Salinity Shelf Water (HSSW), Deep Ice Shelf Water, Circumpolar Deep Water (CDW) and Antarctic Bottom Water, were identified on the basis of the physical and chemical data. In particular, the AT ranged between 2275 and 2374 µmol kg−1 with the lowest values in the surface waters (2275–2346 µmol kg−1), where the influence of the sea-ice melting and of the variability of the physical properties was significant. In the deep layers of the water column, the AT maxima were measured in correspondence to the preferential pathways of the spreading HSSW. The pH had variable values in the surface layer (7.890–8.033) with the highest values in Terra Nova Bay and Ross Sea polynyas. A low pH (7.969±0.025) traced the intrusion of the CDW in the Ross Sea shelf area. All samples revealed waters that were oversaturated with respect to both calcite and aragonite, but near corrosive levels of aragonite saturation state (Ω ca. 1.1–1.2) were associated with the entrainment of CDW over the slope. Aragonite undersaturation is of particular concern for the zooplankton species comprising to calcifying organisms such as pteropods. The partial pressure of CO2 at the sea surface was undersaturated with respect to the atmospheric value, particularly in Terra Nova Bay and the Ross Sea polynyas, but a large variability in the sea–air CO2 fluxes was observed associated with different responses in the strength of the biological and physical processes. Keywords: Total alkalinity; pH; saturation state; Terra Nova Bay polynya; Ross Sea.

  • Antarctic sea ice areas have only been the main focus for a few studies combining observations and three-dimensional atmospheric model experiments. This study presents simulations over the Weddell Sea in early summer, applying the polar-optimized version of the Weather Research and Forecasting model (Polar WRF). The results are compared against observations from the drifting experiment Ice Station Polarstern, which took place on 28 November 2004?2 January 2005. The Polar WRF model showed good skill in simulating synoptic-scale variations. The diurnal cycles of surface variables were reproduced, but the amplitude was overestimated for most of the variables and the simulations were characterized by a cold temperature bias at night. The major challenges related to the modelling of the atmosphere over Antarctic sea ice were found to be associated with clouds, atmospheric boundary-layer processes and processes in the sea ice and snow layer. Temporal variations in the errors in cloud cover generated large errors in long-wave radiation fluxes. In the boundary layer, the overestimated downward sensible heat flux was partly compensated for by the underestimated downward long-wave radiation at the surface. The underestimated downward long-wave flux started to dominate as the stability increased and generated the cold temperature bias at the surface. Problems with the surface energy balance, as found in this study, could be reduced by applying more advanced schemes for snow and ice thermodynamics.

  • In this study, we present evidence that Antarctic and Arctic sea ice act as sink for atmospheric CO2 during periods of snowmelt and surface flooding. The CO2 flux measured directly at the flooded sea ice surface (Fflood) constituted a net CO2 sink of −1.1 ± 0.9 mmol C m−2 d−1 (mean ± 1 SD), which was an order of magnitude higher than the flux measured at the snow-air surface (Fsnow) and bare ice surface (Fice). The Fsnow/Fflood ratio decreased with increasing water equivalent of snow and superimposed-ice, suggesting that the properties of snow and superimposed-ice formation affect the magnitude of the CO2 flux. The Fsnow/Fflood ratio ranged from 0.1 to 0.5, illustrating that 50–90% of the potential flux at the flooded surface was reduced due to the presence of snow/superimposed-ice. Hence, snow cover properties and superimposed-ice play an important role in the CO2 fluxes across the sea ice-snow-atmosphere interface.

  • Data pertaining to environmental conditions, sympagic (sea ice) microalgal dynamics and particle flux were collected before the spring ice break-up 2001 in Pierre Lejay Bay, adjacent to the Dumont d'Urville Station, Petrel Island, East Antarctica. An array of two multiple sediment traps and a current meter was deployed for five weeks, from 8 November to 6 December 2001. The sea-ice chlorophyll a and particulate organic carbon (POC) averaged 0.6 mg l−1 (30 mg m−2) and 20 mg l−1 (1 g m−2) near the coast. The POC export flux that reached a maximum of 79 mg m−2 d−1 during the study period was high compared to the one for the Weddell Sea. The flux was homogeneous from the surface to 47 m depth and increased sharply 33 days before the effective ice break-up. A north-western progressive vector of currents (i.e., Lagrangian drift) in the sub-ice surface waters was demonstrated. Bottom ice, platelet ice and under-ice water at 5 m were characterized by differences in colonization and short-term succession of microalgae. Keywords: Land-fast ice; oceanic short-term regime; POM flux; sympagic communities; East Antarctica.

  • Over the last decade, several hundred seals have been equipped with conductivity-temperature-depth sensors in the Southern Ocean for both biological and physical oceanographic studies. A calibrated collection of seal-derived hydrographic data is now available, consisting of more than 165,000 profiles. The value of these hydrographic data within the existing Southern Ocean observing system is demonstrated herein by conducting two state estimation experiments, differing only in the use or not of seal data to constrain the system. Including seal-derived data substantially modifies the estimated surface mixed-layer properties and circulation patterns within and south of the Antarctic Circumpolar Current. Agreement with independent satellite observations of sea ice concentration is improved, especially along the East Antarctic shelf. Instrumented animals efficiently reduce a critical observational gap, and their contribution to monitoring polar climate variability will continue to grow as data accuracy and spatial coverage increase.

  • The spatiotemporal sensitivity of Antarctic sea ice season length trends are examined using satellite-derived observations over 1979–2012. While the large-scale spatial structure of multidecadal trends has varied little during the satellite record, the magnitude of trends has undergone substantial weakening over the past decade. This weakening is particularly evident in the Ross and Bellingshausen Seas, where a ∼25–50% reduction is observed when comparing trends calculated over 1979–2012 and 1979–1999. Multidecadal trends in the Bellingshausen Sea are found to be dominated by variability over subdecadal time scales, particularly the rapid decline in season length observed between 1979 and 1989. In fact, virtually no trend is detectable when the first decade is excluded from trend calculations. In contrast, the sea ice expansion in the Ross Sea is less influenced by shorter-term variability, with trends shown to be more consistent at decadal time scales and beyond. Understanding these contrasting characteristics have implications for sea ice trend attribution.

  • As part of the 2009 Operation Ice Bridge campaign, the NASA DC-8 aircraft was used to fill the data-time gap in laser observation of the changes in ice sheets, glaciers and sea ice between ICESat-I (Ice, Cloud, and land Elevation Satellite) and ICESat-II. Complementing the cryospheric instrument payload were four in situ atmospheric sampling instruments integrated onboard to measure trace gas concentrations of CO2, CO, N2O, CH4, water vapor and various VOCs (Volatile Organic Compounds). This paper examines two plumes encountered at high altitude (12 km) during the campaign; one during a southbound transit flight (13°S) and the other at 86°S over Antarctica. The data presented are especially significant as the Southern Hemisphere is heavily under-sampled during the austral spring, with few if any high-resolution airborne observations of atmospheric gases made over Antarctica. Strong enhancements of CO, CH4, N2O, CHCl3, OCS, C2H6, C2H2 and C3H8 were observed in the two intercepted air masses that exhibited variations in VOC composition suggesting different sources. The transport model FLEXPART showed that the 13°S plume contained predominately biomass burning emissions originating from Southeast Asia and South Africa, while both anthropogenic and biomass burning emissions were observed at 86°S with South America and South Africa as indicated source regions. The data presented here show evidence that boundary layer pollution is transported from lower latitudes toward the upper troposphere above the South Pole, which may not have been observed in the past.

Last update from database: 3/1/25, 3:17 AM (UTC)

Explore

Topic

Resource type

Online resource