Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
We present the first detailed maps of fast ice around East Antarctica (75°E–170°E), using an image correlation technique applied to RADARSAT ScanSAR images from November in 1997 and 1999. This method is based upon searching for, and distinguishing, correlated regions of the ice-covered ocean which remain stationary, in contrast to adjacent moving pack ice. Within the overlapping longitudinal range of ∼86°E–150.6°E, the total fast-ice area is 141,450 km2 in 1997 and 152,216 km2 in 1999. Calibrated radar backscatter data are also used to determine the distribution of two fast-ice classes based on their surface roughness characteristics. These are “smooth” fast ice (−25.4 dB to −13.5 dB) and “rough” fast ice (−13.5 dB to −2.5 dB). The former comprises ∼67% of the total area, with rough fast ice making up the remaining ∼33%. An estimate is made of fast-ice volume, on the basis of fast-ice type as a proxy measure of ice thickness and area. Results suggest that although fast ice forms 2–16% of the total November sea ice area for this sector of East Antarctica in 1997 and 1999 (average 8.3% across maps), it may comprise 6–57% of the total ice volume (average ∼28% across maps). Grounded icebergs play a key role in fast-ice distribution in all regions apart from 150°E–170°E. These are “snapshot” estimates only, and more work is required to determine longer-term spatiotemporal variability.
-
In previous work, whaling catch positions were used as a proxy record for the position of the Antarctic sea ice edge and mean sea ice extent greater than the present one spanning 2.8° latitude was postulated to have occurred in the pre-1950s period, compared to extents observed since 1973 from microwave satellite imagery. The previous conclusion of an extended northern latitude for ice extent in the earlier epoch applied only to the January (mid-summer) period. For this summer period, however, there are also possible differences between ship and satellite-derived measurements. Our work showed a consistent summer offset (November– December), with the ship-observed ice edge 1 - 1.5° north of the satellitederived ice edge. We further reexamine the use of whale catch as an ice edge proxy where agreement was claimed between the satellite ice edge (1973–1987) and the ship whale catch positions. This examination shows that, while there may be a linear correlation between ice edge position and whale catch data, the slope of the line deviates from unity and the ice edge is also further north in the whale catch data than in the satellite data for most latitudes. We compare the historical (direct) record and modern satellite maps of ice edge position accounting for these differences in ship and satellite observations. This comparison shows that only regional perturbations took place earlier, without significant deviations in the mean ice extents, from the pre-1950s to the post-1970s. This conclusion contradicts that previously stated from the analysis of whale catch data that indicated Antarctic sea ice extent changes were circumpolar rather than regional in nature between the two periods.
-
Satellite remote sensing is a convenient tool for studying snow and glacier ice, allowing us to conduct research over large and otherwise inaccessible areas. This paper reviews various methods for measuring snow and glacier ice properties with satellite remote sensing. These methods have been improving with the use of new satellite sensors, like the synthetic aperture radar (SAR) during the last decade, leading to the development of new and powerful methods, such as SAR interferometry for glacier velocity, digital elevation model generation of ice sheets, or snow cover mapping. Some methods still try to overcome the limitations of present sensors, but future satellites will have much increased capability, for example, the ability to measure the whole optical spectrum or SAR sensors with multiple polarization or frequencies. Among the methods presented are the satellite-derived determination of surface albedo, snow extent, snow volume, snow grain size, surface temperature, glacier facies, glacier velocities, glacier extent, and ice sheet topography. In this review, emphasis is put on the principles and theory of each satellite remote sensing method. An extensive list of references, with an emphasis on studies from the 1990s, allows the reader to delve into specific topics.
-
We have mapped Antarctic blue-ice areas using the U.S. National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) Antarctica cloud-free image mosaic established by the United States Geological Survey. The mosaic consists of 38 scenes acquired from 1980 to 1994. Our results show that approximately 60 000 km2 of blue ice exist for each of the two main types of blue ice: “melt-induced” and “wind-induced”. Normally, the former type is located on slopes in coastal areas where climate conditions (i.e. persistent winds and temperature), together with favourable surface orientation, sustain conditions for surface and near surface melt. The latter blue-ice category occurs near mountains or on outlet glaciers, often at higher elevations, where persistent winds erode snow away year-round, and combined with sublimation creates areas of net ablation. Furthermore, we have identified an additional area of 121 000 km2 as having potential for blue ice. However, in these areas features such as mixed pixels, glazed snow surfaces, crevasses and/or shadows make interpretation more uncertain. In conclusion, a conservative estimate of Antarctic blue-ice area coverage by this method is found to be 120 000 km2 (∼0.8% of the Antarctic continent), with a potential maximum of 241 000 km2 (∼1.6% of the Antarctic continent).
Explore
Topic
- satellite bilder
- Antarktis (2)
- batymetri (1)
- biologi (1)
- blåis (1)
- Dronning Maud Land (1)
- endringer (1)
- fjernmåling (1)
- glasiologi (2)
- havis (2)
- historisk (1)
- hvalfangere (1)
- hvalfangst (1)
- iskant (1)
- kartlegging (1)
- landfast is (1)
- observasjoner (1)
- økologi (1)
- sjøis (2)
- Sørishavet (2)
- teknologi (1)
- Weddellhavet (1)
Resource type
- Journal Article (4)