Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 5 resources

  • Two tri-unsaturated and isomeric (E/Z) highly branched isoprenoid (HBI) diatom lipid biomarkers were quantified in 228 water column samples collected from the English Channel, West Svalbard (Arctic), the Scotia Sea (Southern Ocean) and East Antarctica. We found that the relative amounts of the two HBIs correlate well with water temperatures taken at the time of sampling. Based on these findings and some other HBI data reported previously, we suggest that the proportion of the HBI E-isomer (termed EZ25) may serve as a new proxy for palaeo sea surface temperatures, including in the polar regions. Next steps will involve determination of EZ25 in surface and downcore sediments to ascertain whether the temperature response described herein translates well to the geological record.

  • ABSTRACT Here, we examined the occurrence of plant-associated aerobic anoxygenic phototrophic bacteria (AAPB) across polar regions. Recently found in polar soils and cold-climate plants, AAPBs are photoheterotrophs that rely on environmental organic carbon but capture solar energy via anoxygenic photosynthesis. We revealed the abundance of AAPBs by extracting bacteria from plant tissues and imaging the colonies with bacteriochlorophyll-based near-infrared fluorescence. The taxonomic distribution of AAPBs was determined via 16S rRNA gene analysis. From the northern hemisphere, we describe AAPBs from the leaf endo- and phyllospheres of numerous sub- and Arctic plant species in Northern Finland, Svalbard, and Greenland. In the southern hemisphere, we focused on AAPBs in the root and leaf endospheres and the phyllospheres of Deschampsia antarctica in Chilean Patagonia and maritime Antarctica. Additionally, we describe AAPB from the tissues of several other plant species in Patagonia. We found AAPBs commonly associated with the sampled plant species across both hemispheres. A diversity of Alphaproteobacteria was found to contain the AAP capability: at all sampling sites, Sphingomonas was the most abundant taxon (up to 60%), while Methylobacteria made up a notable proportion of sub-Arctic and sub-Antarctic AAPB samples (up to 32%). In contrast to previous studies describing Methylobacteria frequently in various plant communities, AAP-containing Methylobacteria were virtually absent from our high-latitude sites. With diverse AAPB taxa found ubiquitously across polar regions and plant tissues, our results call attention to the potential ecological interaction between AAPBs and their plant hosts.

  • Plastic particles are present in biotic and abiotic matrices; hence, plastic pollution is a global issue involving terrestrial and marine fauna and poses a threat to humans. Ocean circulation is a crucial vector of microplastics worldwide. Plastic pollution is among the significant threats to the ocean ecosystem. Studies and papers on plastic pollution in the oceans worldwide have been reported. However, the distribution, characterization, and abundance of micro- and nano plastics in the global ocean still need to be carefully investigated. Once plastics are present in the environment, they denature, degrade, and are more prone to fragmentation. It is well established that large plastic objects and macroplastics fragment into mesoplastics and large microplastics through photodegradation and weathering. Hence microplastics easily break up into fragments <100 µm (small microplastics, SMPs) or even into sub-micrometric particles, the nanoplastics. The small size of these SMPs and nanoplastics allows them to be ingested by different organisms according to their mouthparts’ size. Besides, this fragmentation will enable additives and plasticizers to be released into the environment, where they may pose a threat to biota throughout the trophic web in various ecosystems, e.g., from oceans and soils to glaciers. Micro- and nanoplastics (MNPs) can be transported over long distances, together with the other airborne particles. As a result of long-range transport and short-range transport, airborne MNPs can be carried from worldwide to mountain glaciers; from mid-latitudes, they can reach the very high and very low latitudes, i.e., the Arctic and Antarctica. Due to global climate change, warm ocean streams heavily affect the sea circulation in polar areas, carrying regulated and emerging pollutants, microplastics being among them. In this scenario, polar environments may be significantly enriched by MNPs carried by warmer ocean currents intruding into the polar oceans and those in atmospheric aerosol. MNPs may threaten the sea ice formation and enhance the melting of glaciers. The melting and disappearance of glaciers and the intrusion of warm currents into polar areas are also compounded by the thawing of permafrost, which can release pollutants, including MNPs. This Research Topic aims to study the interconnected pathways of MNPs that are paramount to understanding the global microplastic cycle and how climate change alters polar environments and the rest of the world. Furthermore, we aim to identify bioindicators in marine species, populations, and ecosystems, while acknowledging the interconnectedness of freshwater, terrestrial and atmospheric environments to the polar environment. Research on world glaciers will provide a comprehensive evaluation of the impacts of plastic pollution on the marine polar environment and biota, including impacts on humans.

  • During the Quaternary, ice sheets experienced several retreat–advance cycles, strongly influencing climate patterns. In order to properly simulate these phenomena, it is preferable to use physics-based models instead of parameterizations to estimate the surface mass balance (SMB), which strongly influences the evolution of the ice sheet. To further investigate the potential of these SMB models, this work evaluates the BErgen Snow SImulator (BESSI), a multi-layer snow model with high computational efficiency, as an alternative to providing the SMB for the Earth system model iLOVECLIM for multi-millennial simulations as in paleostudies. We compare the behaviors of BESSI and insolation temperature melt (ITM), an existing SMB scheme of iLOVECLIM during the Last Interglacial (LIG). Firstly, we validate the two SMB models using the regional climate model Mod- èle Atmosphérique Régional (MAR) as forcing and reference for the present-day climate over the Greenland and Antarctic ice sheets. The evolution of the SMB over the LIG (130–116 ka) is computed by forcing BESSI and ITM with transient climate forcing obtained from iLOVECLIM for both ice sheets. For present-day climate conditions, both BESSI and ITM exhibit good performance compared to MAR despite a much simpler model setup. While BESSI performs well for both Antarctica and Greenland for the same set of parame- ters, the ITM parameters need to be adapted specifically for each ice sheet. This suggests that the physics embedded in BESSI allows better capture of SMB changes across varying climate conditions, while ITM displays a much stronger sen- sitivity to its tunable parameters. The findings suggest that BESSI can provide more reliable SMB estimations for the iLOVECLIM framework to improve the model simulations of the ice sheet evolution and interactions with climate for multi-millennial simulations.

  • Glaciers are indicators of ongoing anthropogenic climate change1. Their melting leads to increased local geohazards2, and impacts marine3 and terrestrial4,5 ecosystems, regional freshwater resources6, and both global water and energy cycles7,8. Together with the Greenland and Antarctic ice sheets, glaciers are essential drivers of present9,10 and future11–13 sea-level rise. Previous assessments of global glacier mass changes have been hampered by spatial and temporal limitations and the heterogeneity of existing data series14–16. Here we show in an intercomparison exercise that glaciers worldwide lost 273 ± 16 gigatonnes in mass annually from 2000 to 2023, with an increase of 36 ± 10% from the first (2000–2011) to the second (2012–2023) half of the period. Since 2000, glaciers have lost between 2% and 39% of their ice regionally and about 5% globally. Glacier mass loss is about 18% larger than the loss from the Greenland Ice Sheet and more than twice that from the Antarctic Ice Sheet17. Our results arise from a scientific community effort to collect, homogenize, combine and analyse glacier mass changes from in situ and remote-sensing observations. Although our estimates are in agreement with findings from previous assessments14–16 at a global scale, we found some large regional deviations owing to systematic differences among observation methods. Our results provide a refined baseline for better understanding observational differences and for calibrating model ensembles12,16,18, which will help to narrow projection uncertainty for the twenty-first century11,12,18.

Last update from database: 12/1/25, 3:10 AM (UTC)