Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 11 resources
-
The management strategy for the Antarctic krill (Euphausia superba) fishery is being revised. A key aim is to spatially and temporally allocate catches in a manner that minimizes impacts to both the krill stock and dependent predators. This process requires spatial information on the distribution and abundance of krill, yet gaps exist for an important fishing area surrounding the South Orkney Islands in the south Scotia Sea. To fill this need, we create a dynamic distribution model for krill in this region. We used data from a spatially and temporally consistent acoustic survey (2011-2020) and year-specific environmental covariates within a two-part hurdle model. The model successfully captured observed spatial and temporal patterns in krill density. The covariates found to be most important included distance from shelf break, distance from summer sea ice extent, and salinity. The northern and eastern shelf edges of the South Orkney Islands were areas of consistently high krill density and displayed strong spatial overlap between intense fishing activity and foraging chinstrap penguins. High mean krill density was also linked to oceanographic features located within the Weddell Sea. Our data suggest that years in which these features were closer to the South Orkney shelf were also years of positive Southern Annular Mode and higher observed krill densities. Our findings highlight existing fishery?predator?prey overlap in the region and support the hypothesis that Weddell Sea oceanography may play a role in transporting krill into this region. These results will feed into the next phase of krill fisheries management assessment.
-
Temporal distributions of Antarctic krill (Euphausia superba) density and aggregation types were characterized and compared using Nortek Signature100 and SIMRAD Wideband Autonomous Transceiver (WBAT) upward-looking echosounders. Noise varied between the two echosounders. With the Signature100, it was necessary to correct data for background, transient, and impulse noises, while the WBAT data needed to be corrected for background noise only. For selected regions with no visible backscatter, the signal-to-noise ratio of Sv values (i.e. the ratio between the signal and the background noise level) did not vary between the two echosounders. Surface echo backscatter was similar during similar time periods. Descriptive metrics were used to quantify spatial and temporal krill vertical distributions: volume backscatter, mean depth, center of mass, inertia, equivalent area, aggregation index, and proportion occupied. Krill backscatter density differed between the two instruments but was detected at similar mean depths. Krill aggregations were identified at each mooring location and classified in three types based on morphological characteristics. Each type of aggregation shape differed at the two spatially separated moorings, while the acoustic density of each aggregation type was similar. The Signature100 detected a lower number of krill aggregations (n = 133) compared to the WBAT (n = 707). Although both instruments can be used for autonomous deployment and sampling of krill over extended periods, there is a strong caveat for the use of the Signature100 due to significant differences in noise characteristics and krill detection.
-
The stock assessment model for the Antarctic krill fishery is a population model operating on daily timesteps, which permits modeling within-year patterns of some population dynamics. We explored the effects of including within-year patterns in natural and fishing mortality on catch limits of krill, by incorporating temporal presence of key predator species and contemporary temporal trends of the fishing fleet. We found that inclusion of within-year variation in natural and fishing mortalities increased catch limits. Fishing mortality had a greater effect than natural mortality despite differences in top-down predation on krill, and potentially increased catch limits by 24% compared to the baseline model. Additionally, the stock assessment model allowed a higher catch limit when fishing was during peak summer months than autumn. Number of days with active fishing was negatively related to precautionary catch limits. Future stock assessments should incorporate contemporary spatiotemporal fishing trends and consider implementing additional ecosystem components into the model.
-
Krillscan software was developed to automatically process echosounder data and achieve an accelerated and transparent analysis of backscatter data that allows calculation of target biomass. Herein, the fishery for Antarctic krill (Euphausia superba, Henceforth Krill) was used as a case study to develop the approach. Implementation of a sustainable management strategy for the krill fishery is complicated by a lack of regularly updated krill abundance data on spatiotemporal scales of the fishery. To increase krill biomass data availability, automatic echosounder data processing and swarm detection software was tested against traditional manual scrutinization with LSSS software and agreed with only minor offsets in estimated nautical area scattering coefficients. In addition to automatic processing and data transfer, Krillscan also has a graphical user interface to supervise automatic krill swarm detection. Echogram size can be compressed up to 100 times and raw data are processed faster than generated, thereby enabling near-real time analysis and data transfer. Compressed data can be transmitted online to allow fishing vessels to conduct surveys without having scientific personnel with special expertise on board.
-
Marine predators are integral to the functioning of marine ecosystems, and their consumption requirements should be integrated into ecosystem-based management policies. However, estimating prey consumption in diving marine predators requires innovative methods as predator-prey interactions are rarely observable. We developed a novel method, validated by animal-borne video, that uses tri-axial acceleration and depth data to quantify prey capture rates in chinstrap penguins (Pygoscelis antarctica). These penguins are important consumers of Antarctic krill (Euphausia superba), a commercially harvested crustacean central to the Southern Ocean food web. We collected a large data set (n = 41 individuals) comprising overlapping video, accelerometer and depth data from foraging penguins. Prey captures were manually identified in videos, and those observations were used in supervised training of two deep learning neural networks (convolutional neural network (CNN) and V-Net). Although the CNN and V-Net architectures and input data pipelines differed, both trained models were able to predict prey captures from new acceleration and depth data (linear regression slope of predictions against video-observed prey captures = 1.13; R2 approximate to 0.86). Our results illustrate that deep learning algorithms offer a means to process the large quantities of data generated by contemporary bio-logging sensors to robustly estimate prey capture events in diving marine predators.
-
The Southern Ocean is a major sink of anthropogenic CO2 and an important foraging area for top trophic level consumers. However, iron limitation sets an upper limit to primary productivity. Here we report on a considerably dense late summer phytoplankton bloom spanning 9000 km2 in the open ocean of the eastern Weddell Gyre. Over its 2.5 months duration, the bloom accumulated up to 20 g C m−2 of organic matter, which is unusually high for Southern Ocean open waters. We show that, over 1997–2019, this open ocean bloom was likely driven by anomalies in easterly winds that push sea ice southwards and favor the upwelling of Warm Deep Water enriched in hydrothermal iron and, possibly, other iron sources. This recurring open ocean bloom likely facilitates enhanced carbon export and sustains high standing stocks of Antarctic krill, supporting feeding hot spots for marine birds and baleen whales.
-
Bycatch of nontarget species can contribute to overfishing and slow efforts to rebuild fish stocks. Controlling bycatch is fundamental to sustainable fishing and maintaining healthy populations of target species. The Antarctic krill (Euphausia superba) fishery is the largest volume fishery in the Southern Ocean. Understanding the significance of bycatch and its diversity is critical to managing this keystone species. Registered bycatch data from the Antarctic krill fishery in the southwest Atlantic sector of the Southern Ocean were analysed. Observers collected data following an internationally agreed method during the 2010–2020 fishing seasons, with a 20 (± 9) % coverage of fishing activity of Total catch of Antarctic krill which increased from 200,000 tonnes to 450,000 tonnes, with the greatest increase over the last 3 years. Except in 2010 (2.2%), the bycatch ratio was stable and ranged 0.1–0.3%. Fish dominated the bycatch, followed by tunicates and other crustaceans. Observer coverage was high, and bycatch levels were generally low across gear types. Given that accurate information on bycatch is important for sustaining developing fisheries, maintaining high observer coverage of this fishery will be important for detecting impacts from a warming climate and for moving back into historical fishing grounds.
-
Estimates of the distribution and density of Antarctic krill (Euphausia superba Dana, 1850) were derived from a large-scale survey conducted during the austral summer in the Southwest Atlantic sector of the Southern Ocean and across the Scotia Sea in 2018–19, the ‘2018–19 Area 48 Survey’. Survey vessels were provided by Norway, the Association of Responsible Krill harvesting companies and Aker BioMarine AS, the United Kingdom, Ukraine, Republic of Korea, and China. Survey design followed the transects of the Commission for the Conservation of Antarctic Marine Living Resources synoptic survey, carried out in 2000 and from regular national surveys performed in the South Atlantic sector by the U.S., China, Republic of Korea, Norway, and the U.K. The 2018–19 Area 48 Survey represents only the second large-scale survey performed in the area and this joint effort resulted in the largest ever total transect line (19,500 km) coverage carried out as one single exercise in the Southern Ocean. We delineated and integrated acoustic backscatter arising from krill swarms to produce distribution maps of krill areal biomass density and standing stock (biomass) estimates. Krill standing stock for the Area 48 was estimated to be 62.6 megatonnes (mean density of 30 g m–2 over 2 million km2) with a sampling coefficient variation of 13%. The highest mean krill densities were found in the South Orkney Islands stratum (93.2 g m–2) and the lowest in the South Georgia Island stratum (6.4 g m–2). The krill densities across the strata compared to those found during the previous survey indicate some regional differences in distribution and biomass. It is currently not possible to assign any such differences or lack of differences between the two survey datasets to longer term trends in the environment, krill stocks or fishing pressure.
-
In the Southern Ocean, large-scale phytoplankton blooms occur in open water and the sea-ice zone (SIZ). These blooms have a range of fates including physical advection, downward carbon export, or grazing. Here, we determine the magnitude, timing and spatial trends of the biogeochemical (export) and ecological (foodwebs) fates of phytoplankton, based on seven BGC-Argo floats spanning three years across the SIZ. We calculate loss terms using the production of chlorophyll—based on nitrate depletion—compared with measured chlorophyll. Export losses are estimated using conspicuous chlorophyll pulses at depth. By subtracting export losses, we calculate grazing-mediated losses. Herbivory accounts for ~90% of the annually-averaged losses (169 mg C m−2 d−1), and phytodetritus POC export comprises ~10%. Furthermore, export and grazing losses each exhibit distinctive seasonality captured by all floats spanning 60°S to 69°S. These similar trends reveal widespread patterns in phytoplankton fate throughout the Southern Ocean SIZ.
Explore
Topic
- plankton
- biologging (1)
- dataanalyse (2)
- ekkolodd (3)
- fiskeri (1)
- fiskerier (3)
- fiskeriforvaltning (1)
- fototaxis (1)
- kjemi (2)
- krill (8)
- marin biologi (7)
- marin økologi (1)
- marin zoologi (1)
- marine økosystemer (3)
- økologi (1)
- oseanografi (3)
- pingviner (1)
- Scotiahavet (1)
- Sør-Orknøyene (1)
- Sørishavet (11)
- Weddellhavet (1)
Resource type
- Journal Article (11)
Publication year
Online resource
- yes (11)