Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
Abstract Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest-known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea-ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter-annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea-ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.
-
In this reported study, a novel high-performance thin-layer chromatography (HPTLC) method was developed for the detection and quantification of the toxic substance di(2-ethylhexyl) adipate (DEHA) in Antarctic krill. This procedure was based on the extraction of DEHA by ultrasonic solvent extraction with anhydrous ethanol, silica-gel column chromatographic separation, HPTLC detection and quantification using petroleum ether/ethyl acetate/ acetone/glacial acetic acid (29:1:0.5:2d*, v/v/v/v) as the developing solvent and bromine thymol blue solution as the chromogenic agent. The content of DEHA in freeze-dried Antarctic krill was found to be ca. 0.63 ± 0.05 mg/g. The structure of DEHA in the Antarctic krill was subsequently determined by gas chromatography–mass spectrometry (GC-MS) and infrared chromatography, which verified the presence of this compound in the krill. The HPTLC method exhibited excellent accuracy, with a recovery of 97.1–101.6% and good precision with a relative standard deviation of 2.47–4.90%. The DEHA in Antarctic krill oil was extracted by n-hexane and detected using the same method described above, which verified that DEHA was also present in krill oil at a concentration of ca. 2.16 ± 0.08 mg/g. The presence of DEHA in kill oil is very concerning because of its demonstrated harmful ecotoxicity, and since Antarctic krill is the key link in the food chain in the Antarctic coastal marine ecosystem. The adverse effects of DEHA on Antarctic krill and the source of DEHA will be explored in future research.
-
Climate change is predicted to affect Southern Ocean biota in complex ways. Euphausiids play a crucial role in the trophodynamics of the ecosystem, and their status under future environmental scenarios is the subject of much concern. Thysanoessa macrura is the most widely distributed, numerically abundant, and ubiquitous euphausiid south of the Polar Front and may be an underappreciated prey species. T. macrura is eurythermic and may be better able to tolerate warming ocean temperatures in comparison to the more stenothermic Antarctic krill Euphausia superba. We use temperature-dependent growth models and biomass per recruit to investigate how the availability of this euphausiid to predators may change under a range of temperature scenarios. We contrast this with the availability of E. superba and find that, under some ranges of temperature change, increasing T. macrura growth may be able to partially compensate for decreasing E. superba growth in terms of biomass available for predators. However, in spite of its considerable biomass, other aspects of this species, such as its size and habitat, may limit its potential to replace E. superba in the diet of many predators. KEYWORDS: Thysanoessa macrura · Euphausia superba · Growth · Temperature · Climate change · Krill predators · Southern Ocean · Euphausiids · Modeling
-
Penguins are a monophyletic group in which many species are found breeding sympatrically, raising questions regarding how these species coexist successfully. Here, the isotopic niche of three sympatric pygoscelid penguin species was investigated at Powell Island, South Orkney Islands, during two breeding seasons (austral summers 2013–2014 and 2015–2016). Measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were obtained from blood (adults) or feather (chicks) samples collected from Adélie Pygoscelis adeliae, chinstrap P. antarctica, and gentoo P. papua penguins. Isotopic niche regions (a proxy for the realized trophic niches) were computed to provide estimates of the trophic niche width of the studied species during the breeding season. The isotopic niche regions of adults of all three species were similar, but gentoo chicks had noticeably wider isotopic niches than the chicks of the other two species. Moderate to strong overlap in isotopic niche among species was found during each breeding season and for both age groups, suggesting that the potential for competition for shared food sources was similar during the two study years, although the actual level of competition could not be determined owing to the lack of data on resource abundance. Clear interannual shifts in isotopic niche were seen in all three species, though of lower amplitude for adult chinstrap penguins. These shifts were due to variation in carbon, but not nitrogen, isotopic ratios, which could indicate either a change in isotopic signature of their prey or a switch to an alternative food web. The main conclusions of this study are that (1) there is a partial overlap in the isotopic niches of these three congeneric species and that (2) they responded similarly to changes that likely occurred at the base of their food chain between the 2 years of the study.
Explore
Topic
- plankton
- Antarktis (1)
- biomasse (1)
- fôring (1)
- havis (1)
- havoppvarming (1)
- hekkekoloni (1)
- hvaler (1)
- klimaendringer (2)
- krill (3)
- marin biologi (2)
- marin forurensning (1)
- marine økosystemer (2)
- miljøendringer (2)
- økotoksikologi (1)
- økotoksiner (1)
- pingviner (1)
- plastpartikler (1)
- sjøis (1)
- Sørishavet (3)
- stabile isotoper (2)
- zoologi (1)
Resource type
- Journal Article (4)
Publication year
Online resource
- yes (4)